Multivariate coefficient of variation control charts in phase I of SPC
Abstract Multivariate control charts are mostly available for monitoring the process mean vector or the covariance matrix. Recently, work has been done on monitoring the multivariate coefficient of variation (CV) in phase II of the statistical process control (SPC). However, no study has investigate...
Ausführliche Beschreibung
Autor*in: |
Abbasi, Saddam Akber [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London Ltd., part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: The international journal of advanced manufacturing technology - Springer London, 1985, 99(2018), 5-8 vom: 29. Aug., Seite 1903-1916 |
---|---|
Übergeordnetes Werk: |
volume:99 ; year:2018 ; number:5-8 ; day:29 ; month:08 ; pages:1903-1916 |
Links: |
---|
DOI / URN: |
10.1007/s00170-018-2535-3 |
---|
Katalog-ID: |
OLC2026128324 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026128324 | ||
003 | DE-627 | ||
005 | 20230323141828.0 | ||
007 | tu | ||
008 | 200820s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00170-018-2535-3 |2 doi | |
035 | |a (DE-627)OLC2026128324 | ||
035 | |a (DE-He213)s00170-018-2535-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Abbasi, Saddam Akber |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multivariate coefficient of variation control charts in phase I of SPC |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London Ltd., part of Springer Nature 2018 | ||
520 | |a Abstract Multivariate control charts are mostly available for monitoring the process mean vector or the covariance matrix. Recently, work has been done on monitoring the multivariate coefficient of variation (CV) in phase II of the statistical process control (SPC). However, no study has investigated the performance of the multivariate CV charts in phase I. The phase I procedures are more important and involve the estimation of the charts’ limits from a historical or reference dataset that represents the in-control state of the process. In real life, contaminations are mostly present in the historical samples; hence, the phase I procedures are mostly adopted to get rid of these contaminated samples. In this study, we investigate the performance of a variety of multivariate CV charts in phase I considering both diffuse symmetric and localized CV disturbance scenarios, using probability to signal as a performance measure. A real-life application, concerning carbon fiber tubing, is also provided to show the implementation of the proposed charts in phase I. The findings of this study will be useful for practitioners in their selection of an efficient phase I control chart for monitoring multivariate CV. | ||
650 | 4 | |a Coefficient of variation | |
650 | 4 | |a Multivariate control chart | |
650 | 4 | |a Phase I | |
650 | 4 | |a Probability to signal | |
650 | 4 | |a Statistical process control | |
700 | 1 | |a Adegoke, Nurudeen A. |0 (orcid)0000-0001-7592-5460 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The international journal of advanced manufacturing technology |d Springer London, 1985 |g 99(2018), 5-8 vom: 29. Aug., Seite 1903-1916 |w (DE-627)129185299 |w (DE-600)52651-4 |w (DE-576)014456192 |x 0268-3768 |7 nnns |
773 | 1 | 8 | |g volume:99 |g year:2018 |g number:5-8 |g day:29 |g month:08 |g pages:1903-1916 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00170-018-2535-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2333 | ||
951 | |a AR | ||
952 | |d 99 |j 2018 |e 5-8 |b 29 |c 08 |h 1903-1916 |
author_variant |
s a a sa saa n a a na naa |
---|---|
matchkey_str |
article:02683768:2018----::utvraeofiinovrainotoca |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s00170-018-2535-3 doi (DE-627)OLC2026128324 (DE-He213)s00170-018-2535-3-p DE-627 ger DE-627 rakwb eng 670 VZ Abbasi, Saddam Akber verfasserin aut Multivariate coefficient of variation control charts in phase I of SPC 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2018 Abstract Multivariate control charts are mostly available for monitoring the process mean vector or the covariance matrix. Recently, work has been done on monitoring the multivariate coefficient of variation (CV) in phase II of the statistical process control (SPC). However, no study has investigated the performance of the multivariate CV charts in phase I. The phase I procedures are more important and involve the estimation of the charts’ limits from a historical or reference dataset that represents the in-control state of the process. In real life, contaminations are mostly present in the historical samples; hence, the phase I procedures are mostly adopted to get rid of these contaminated samples. In this study, we investigate the performance of a variety of multivariate CV charts in phase I considering both diffuse symmetric and localized CV disturbance scenarios, using probability to signal as a performance measure. A real-life application, concerning carbon fiber tubing, is also provided to show the implementation of the proposed charts in phase I. The findings of this study will be useful for practitioners in their selection of an efficient phase I control chart for monitoring multivariate CV. Coefficient of variation Multivariate control chart Phase I Probability to signal Statistical process control Adegoke, Nurudeen A. (orcid)0000-0001-7592-5460 aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 99(2018), 5-8 vom: 29. Aug., Seite 1903-1916 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:99 year:2018 number:5-8 day:29 month:08 pages:1903-1916 https://doi.org/10.1007/s00170-018-2535-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 99 2018 5-8 29 08 1903-1916 |
spelling |
10.1007/s00170-018-2535-3 doi (DE-627)OLC2026128324 (DE-He213)s00170-018-2535-3-p DE-627 ger DE-627 rakwb eng 670 VZ Abbasi, Saddam Akber verfasserin aut Multivariate coefficient of variation control charts in phase I of SPC 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2018 Abstract Multivariate control charts are mostly available for monitoring the process mean vector or the covariance matrix. Recently, work has been done on monitoring the multivariate coefficient of variation (CV) in phase II of the statistical process control (SPC). However, no study has investigated the performance of the multivariate CV charts in phase I. The phase I procedures are more important and involve the estimation of the charts’ limits from a historical or reference dataset that represents the in-control state of the process. In real life, contaminations are mostly present in the historical samples; hence, the phase I procedures are mostly adopted to get rid of these contaminated samples. In this study, we investigate the performance of a variety of multivariate CV charts in phase I considering both diffuse symmetric and localized CV disturbance scenarios, using probability to signal as a performance measure. A real-life application, concerning carbon fiber tubing, is also provided to show the implementation of the proposed charts in phase I. The findings of this study will be useful for practitioners in their selection of an efficient phase I control chart for monitoring multivariate CV. Coefficient of variation Multivariate control chart Phase I Probability to signal Statistical process control Adegoke, Nurudeen A. (orcid)0000-0001-7592-5460 aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 99(2018), 5-8 vom: 29. Aug., Seite 1903-1916 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:99 year:2018 number:5-8 day:29 month:08 pages:1903-1916 https://doi.org/10.1007/s00170-018-2535-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 99 2018 5-8 29 08 1903-1916 |
allfields_unstemmed |
10.1007/s00170-018-2535-3 doi (DE-627)OLC2026128324 (DE-He213)s00170-018-2535-3-p DE-627 ger DE-627 rakwb eng 670 VZ Abbasi, Saddam Akber verfasserin aut Multivariate coefficient of variation control charts in phase I of SPC 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2018 Abstract Multivariate control charts are mostly available for monitoring the process mean vector or the covariance matrix. Recently, work has been done on monitoring the multivariate coefficient of variation (CV) in phase II of the statistical process control (SPC). However, no study has investigated the performance of the multivariate CV charts in phase I. The phase I procedures are more important and involve the estimation of the charts’ limits from a historical or reference dataset that represents the in-control state of the process. In real life, contaminations are mostly present in the historical samples; hence, the phase I procedures are mostly adopted to get rid of these contaminated samples. In this study, we investigate the performance of a variety of multivariate CV charts in phase I considering both diffuse symmetric and localized CV disturbance scenarios, using probability to signal as a performance measure. A real-life application, concerning carbon fiber tubing, is also provided to show the implementation of the proposed charts in phase I. The findings of this study will be useful for practitioners in their selection of an efficient phase I control chart for monitoring multivariate CV. Coefficient of variation Multivariate control chart Phase I Probability to signal Statistical process control Adegoke, Nurudeen A. (orcid)0000-0001-7592-5460 aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 99(2018), 5-8 vom: 29. Aug., Seite 1903-1916 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:99 year:2018 number:5-8 day:29 month:08 pages:1903-1916 https://doi.org/10.1007/s00170-018-2535-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 99 2018 5-8 29 08 1903-1916 |
allfieldsGer |
10.1007/s00170-018-2535-3 doi (DE-627)OLC2026128324 (DE-He213)s00170-018-2535-3-p DE-627 ger DE-627 rakwb eng 670 VZ Abbasi, Saddam Akber verfasserin aut Multivariate coefficient of variation control charts in phase I of SPC 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2018 Abstract Multivariate control charts are mostly available for monitoring the process mean vector or the covariance matrix. Recently, work has been done on monitoring the multivariate coefficient of variation (CV) in phase II of the statistical process control (SPC). However, no study has investigated the performance of the multivariate CV charts in phase I. The phase I procedures are more important and involve the estimation of the charts’ limits from a historical or reference dataset that represents the in-control state of the process. In real life, contaminations are mostly present in the historical samples; hence, the phase I procedures are mostly adopted to get rid of these contaminated samples. In this study, we investigate the performance of a variety of multivariate CV charts in phase I considering both diffuse symmetric and localized CV disturbance scenarios, using probability to signal as a performance measure. A real-life application, concerning carbon fiber tubing, is also provided to show the implementation of the proposed charts in phase I. The findings of this study will be useful for practitioners in their selection of an efficient phase I control chart for monitoring multivariate CV. Coefficient of variation Multivariate control chart Phase I Probability to signal Statistical process control Adegoke, Nurudeen A. (orcid)0000-0001-7592-5460 aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 99(2018), 5-8 vom: 29. Aug., Seite 1903-1916 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:99 year:2018 number:5-8 day:29 month:08 pages:1903-1916 https://doi.org/10.1007/s00170-018-2535-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 99 2018 5-8 29 08 1903-1916 |
allfieldsSound |
10.1007/s00170-018-2535-3 doi (DE-627)OLC2026128324 (DE-He213)s00170-018-2535-3-p DE-627 ger DE-627 rakwb eng 670 VZ Abbasi, Saddam Akber verfasserin aut Multivariate coefficient of variation control charts in phase I of SPC 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2018 Abstract Multivariate control charts are mostly available for monitoring the process mean vector or the covariance matrix. Recently, work has been done on monitoring the multivariate coefficient of variation (CV) in phase II of the statistical process control (SPC). However, no study has investigated the performance of the multivariate CV charts in phase I. The phase I procedures are more important and involve the estimation of the charts’ limits from a historical or reference dataset that represents the in-control state of the process. In real life, contaminations are mostly present in the historical samples; hence, the phase I procedures are mostly adopted to get rid of these contaminated samples. In this study, we investigate the performance of a variety of multivariate CV charts in phase I considering both diffuse symmetric and localized CV disturbance scenarios, using probability to signal as a performance measure. A real-life application, concerning carbon fiber tubing, is also provided to show the implementation of the proposed charts in phase I. The findings of this study will be useful for practitioners in their selection of an efficient phase I control chart for monitoring multivariate CV. Coefficient of variation Multivariate control chart Phase I Probability to signal Statistical process control Adegoke, Nurudeen A. (orcid)0000-0001-7592-5460 aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 99(2018), 5-8 vom: 29. Aug., Seite 1903-1916 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:99 year:2018 number:5-8 day:29 month:08 pages:1903-1916 https://doi.org/10.1007/s00170-018-2535-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 99 2018 5-8 29 08 1903-1916 |
language |
English |
source |
Enthalten in The international journal of advanced manufacturing technology 99(2018), 5-8 vom: 29. Aug., Seite 1903-1916 volume:99 year:2018 number:5-8 day:29 month:08 pages:1903-1916 |
sourceStr |
Enthalten in The international journal of advanced manufacturing technology 99(2018), 5-8 vom: 29. Aug., Seite 1903-1916 volume:99 year:2018 number:5-8 day:29 month:08 pages:1903-1916 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Coefficient of variation Multivariate control chart Phase I Probability to signal Statistical process control |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
The international journal of advanced manufacturing technology |
authorswithroles_txt_mv |
Abbasi, Saddam Akber @@aut@@ Adegoke, Nurudeen A. @@aut@@ |
publishDateDaySort_date |
2018-08-29T00:00:00Z |
hierarchy_top_id |
129185299 |
dewey-sort |
3670 |
id |
OLC2026128324 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026128324</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323141828.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-018-2535-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026128324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-018-2535-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abbasi, Saddam Akber</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multivariate coefficient of variation control charts in phase I of SPC</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Multivariate control charts are mostly available for monitoring the process mean vector or the covariance matrix. Recently, work has been done on monitoring the multivariate coefficient of variation (CV) in phase II of the statistical process control (SPC). However, no study has investigated the performance of the multivariate CV charts in phase I. The phase I procedures are more important and involve the estimation of the charts’ limits from a historical or reference dataset that represents the in-control state of the process. In real life, contaminations are mostly present in the historical samples; hence, the phase I procedures are mostly adopted to get rid of these contaminated samples. In this study, we investigate the performance of a variety of multivariate CV charts in phase I considering both diffuse symmetric and localized CV disturbance scenarios, using probability to signal as a performance measure. A real-life application, concerning carbon fiber tubing, is also provided to show the implementation of the proposed charts in phase I. The findings of this study will be useful for practitioners in their selection of an efficient phase I control chart for monitoring multivariate CV.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coefficient of variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate control chart</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase I</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability to signal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical process control</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adegoke, Nurudeen A.</subfield><subfield code="0">(orcid)0000-0001-7592-5460</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">99(2018), 5-8 vom: 29. Aug., Seite 1903-1916</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:99</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:5-8</subfield><subfield code="g">day:29</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:1903-1916</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-018-2535-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">99</subfield><subfield code="j">2018</subfield><subfield code="e">5-8</subfield><subfield code="b">29</subfield><subfield code="c">08</subfield><subfield code="h">1903-1916</subfield></datafield></record></collection>
|
author |
Abbasi, Saddam Akber |
spellingShingle |
Abbasi, Saddam Akber ddc 670 misc Coefficient of variation misc Multivariate control chart misc Phase I misc Probability to signal misc Statistical process control Multivariate coefficient of variation control charts in phase I of SPC |
authorStr |
Abbasi, Saddam Akber |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129185299 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0268-3768 |
topic_title |
670 VZ Multivariate coefficient of variation control charts in phase I of SPC Coefficient of variation Multivariate control chart Phase I Probability to signal Statistical process control |
topic |
ddc 670 misc Coefficient of variation misc Multivariate control chart misc Phase I misc Probability to signal misc Statistical process control |
topic_unstemmed |
ddc 670 misc Coefficient of variation misc Multivariate control chart misc Phase I misc Probability to signal misc Statistical process control |
topic_browse |
ddc 670 misc Coefficient of variation misc Multivariate control chart misc Phase I misc Probability to signal misc Statistical process control |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The international journal of advanced manufacturing technology |
hierarchy_parent_id |
129185299 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
The international journal of advanced manufacturing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 |
title |
Multivariate coefficient of variation control charts in phase I of SPC |
ctrlnum |
(DE-627)OLC2026128324 (DE-He213)s00170-018-2535-3-p |
title_full |
Multivariate coefficient of variation control charts in phase I of SPC |
author_sort |
Abbasi, Saddam Akber |
journal |
The international journal of advanced manufacturing technology |
journalStr |
The international journal of advanced manufacturing technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
1903 |
author_browse |
Abbasi, Saddam Akber Adegoke, Nurudeen A. |
container_volume |
99 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Abbasi, Saddam Akber |
doi_str_mv |
10.1007/s00170-018-2535-3 |
normlink |
(ORCID)0000-0001-7592-5460 |
normlink_prefix_str_mv |
(orcid)0000-0001-7592-5460 |
dewey-full |
670 |
title_sort |
multivariate coefficient of variation control charts in phase i of spc |
title_auth |
Multivariate coefficient of variation control charts in phase I of SPC |
abstract |
Abstract Multivariate control charts are mostly available for monitoring the process mean vector or the covariance matrix. Recently, work has been done on monitoring the multivariate coefficient of variation (CV) in phase II of the statistical process control (SPC). However, no study has investigated the performance of the multivariate CV charts in phase I. The phase I procedures are more important and involve the estimation of the charts’ limits from a historical or reference dataset that represents the in-control state of the process. In real life, contaminations are mostly present in the historical samples; hence, the phase I procedures are mostly adopted to get rid of these contaminated samples. In this study, we investigate the performance of a variety of multivariate CV charts in phase I considering both diffuse symmetric and localized CV disturbance scenarios, using probability to signal as a performance measure. A real-life application, concerning carbon fiber tubing, is also provided to show the implementation of the proposed charts in phase I. The findings of this study will be useful for practitioners in their selection of an efficient phase I control chart for monitoring multivariate CV. © Springer-Verlag London Ltd., part of Springer Nature 2018 |
abstractGer |
Abstract Multivariate control charts are mostly available for monitoring the process mean vector or the covariance matrix. Recently, work has been done on monitoring the multivariate coefficient of variation (CV) in phase II of the statistical process control (SPC). However, no study has investigated the performance of the multivariate CV charts in phase I. The phase I procedures are more important and involve the estimation of the charts’ limits from a historical or reference dataset that represents the in-control state of the process. In real life, contaminations are mostly present in the historical samples; hence, the phase I procedures are mostly adopted to get rid of these contaminated samples. In this study, we investigate the performance of a variety of multivariate CV charts in phase I considering both diffuse symmetric and localized CV disturbance scenarios, using probability to signal as a performance measure. A real-life application, concerning carbon fiber tubing, is also provided to show the implementation of the proposed charts in phase I. The findings of this study will be useful for practitioners in their selection of an efficient phase I control chart for monitoring multivariate CV. © Springer-Verlag London Ltd., part of Springer Nature 2018 |
abstract_unstemmed |
Abstract Multivariate control charts are mostly available for monitoring the process mean vector or the covariance matrix. Recently, work has been done on monitoring the multivariate coefficient of variation (CV) in phase II of the statistical process control (SPC). However, no study has investigated the performance of the multivariate CV charts in phase I. The phase I procedures are more important and involve the estimation of the charts’ limits from a historical or reference dataset that represents the in-control state of the process. In real life, contaminations are mostly present in the historical samples; hence, the phase I procedures are mostly adopted to get rid of these contaminated samples. In this study, we investigate the performance of a variety of multivariate CV charts in phase I considering both diffuse symmetric and localized CV disturbance scenarios, using probability to signal as a performance measure. A real-life application, concerning carbon fiber tubing, is also provided to show the implementation of the proposed charts in phase I. The findings of this study will be useful for practitioners in their selection of an efficient phase I control chart for monitoring multivariate CV. © Springer-Verlag London Ltd., part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 |
container_issue |
5-8 |
title_short |
Multivariate coefficient of variation control charts in phase I of SPC |
url |
https://doi.org/10.1007/s00170-018-2535-3 |
remote_bool |
false |
author2 |
Adegoke, Nurudeen A. |
author2Str |
Adegoke, Nurudeen A. |
ppnlink |
129185299 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00170-018-2535-3 |
up_date |
2024-07-04T03:10:55.158Z |
_version_ |
1803616418696003584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026128324</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323141828.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-018-2535-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026128324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-018-2535-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abbasi, Saddam Akber</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multivariate coefficient of variation control charts in phase I of SPC</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Multivariate control charts are mostly available for monitoring the process mean vector or the covariance matrix. Recently, work has been done on monitoring the multivariate coefficient of variation (CV) in phase II of the statistical process control (SPC). However, no study has investigated the performance of the multivariate CV charts in phase I. The phase I procedures are more important and involve the estimation of the charts’ limits from a historical or reference dataset that represents the in-control state of the process. In real life, contaminations are mostly present in the historical samples; hence, the phase I procedures are mostly adopted to get rid of these contaminated samples. In this study, we investigate the performance of a variety of multivariate CV charts in phase I considering both diffuse symmetric and localized CV disturbance scenarios, using probability to signal as a performance measure. A real-life application, concerning carbon fiber tubing, is also provided to show the implementation of the proposed charts in phase I. The findings of this study will be useful for practitioners in their selection of an efficient phase I control chart for monitoring multivariate CV.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coefficient of variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate control chart</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase I</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability to signal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical process control</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adegoke, Nurudeen A.</subfield><subfield code="0">(orcid)0000-0001-7592-5460</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">99(2018), 5-8 vom: 29. Aug., Seite 1903-1916</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:99</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:5-8</subfield><subfield code="g">day:29</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:1903-1916</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-018-2535-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">99</subfield><subfield code="j">2018</subfield><subfield code="e">5-8</subfield><subfield code="b">29</subfield><subfield code="c">08</subfield><subfield code="h">1903-1916</subfield></datafield></record></collection>
|
score |
7.4023542 |