Study on grinding force model in ultrasonic vibration-assisted grinding of alloy structural steel
Abstract Based on the micro-removal mechanism of the ultrasonic vibration-assisted grinding (UVAG), a new prediction model of alloy structural steel is proposed in this paper. In the grinding process, the abrasive grains mainly go through two stages: plowing stage and chip forming stage. Then, grind...
Ausführliche Beschreibung
Autor*in: |
Li, Deguo [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London Ltd., part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: The international journal of advanced manufacturing technology - Springer London, 1985, 101(2018), 5-8 vom: 21. Nov., Seite 1467-1479 |
---|---|
Übergeordnetes Werk: |
volume:101 ; year:2018 ; number:5-8 ; day:21 ; month:11 ; pages:1467-1479 |
Links: |
---|
DOI / URN: |
10.1007/s00170-018-2929-2 |
---|
Katalog-ID: |
OLC2026133530 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026133530 | ||
003 | DE-627 | ||
005 | 20230323141941.0 | ||
007 | tu | ||
008 | 200820s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00170-018-2929-2 |2 doi | |
035 | |a (DE-627)OLC2026133530 | ||
035 | |a (DE-He213)s00170-018-2929-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Li, Deguo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Study on grinding force model in ultrasonic vibration-assisted grinding of alloy structural steel |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London Ltd., part of Springer Nature 2018 | ||
520 | |a Abstract Based on the micro-removal mechanism of the ultrasonic vibration-assisted grinding (UVAG), a new prediction model of alloy structural steel is proposed in this paper. In the grinding process, the abrasive grains mainly go through two stages: plowing stage and chip forming stage. Then, grinding force model of single grain under different material removal modes is established. The thickness of the abrasive grain, the number of grains involved in grinding, and the interference between the abrasive grains are essential factors that affect the grinding force. Considering the influence of ultrasonic vibration on these factors, the grinding force model of the grinding wheel is developed. The ultrasonic grinding experiments are conducted to validate this model. Findings show that the theoretically predicted results are consistent with the experimental results. | ||
650 | 4 | |a Ultrasonic grinding | |
650 | 4 | |a Chip thickness | |
650 | 4 | |a Plowing | |
650 | 4 | |a Chip forming | |
650 | 4 | |a Grinding force | |
700 | 1 | |a Tang, Jinyuan |4 aut | |
700 | 1 | |a Chen, Haifeng |4 aut | |
700 | 1 | |a Shao, Wen |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The international journal of advanced manufacturing technology |d Springer London, 1985 |g 101(2018), 5-8 vom: 21. Nov., Seite 1467-1479 |w (DE-627)129185299 |w (DE-600)52651-4 |w (DE-576)014456192 |x 0268-3768 |7 nnns |
773 | 1 | 8 | |g volume:101 |g year:2018 |g number:5-8 |g day:21 |g month:11 |g pages:1467-1479 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00170-018-2929-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2333 | ||
951 | |a AR | ||
952 | |d 101 |j 2018 |e 5-8 |b 21 |c 11 |h 1467-1479 |
author_variant |
d l dl j t jt h c hc w s ws |
---|---|
matchkey_str |
article:02683768:2018----::tdogidnfreoeiutaoivbainsitdrnig |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s00170-018-2929-2 doi (DE-627)OLC2026133530 (DE-He213)s00170-018-2929-2-p DE-627 ger DE-627 rakwb eng 670 VZ Li, Deguo verfasserin aut Study on grinding force model in ultrasonic vibration-assisted grinding of alloy structural steel 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2018 Abstract Based on the micro-removal mechanism of the ultrasonic vibration-assisted grinding (UVAG), a new prediction model of alloy structural steel is proposed in this paper. In the grinding process, the abrasive grains mainly go through two stages: plowing stage and chip forming stage. Then, grinding force model of single grain under different material removal modes is established. The thickness of the abrasive grain, the number of grains involved in grinding, and the interference between the abrasive grains are essential factors that affect the grinding force. Considering the influence of ultrasonic vibration on these factors, the grinding force model of the grinding wheel is developed. The ultrasonic grinding experiments are conducted to validate this model. Findings show that the theoretically predicted results are consistent with the experimental results. Ultrasonic grinding Chip thickness Plowing Chip forming Grinding force Tang, Jinyuan aut Chen, Haifeng aut Shao, Wen aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 101(2018), 5-8 vom: 21. Nov., Seite 1467-1479 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:101 year:2018 number:5-8 day:21 month:11 pages:1467-1479 https://doi.org/10.1007/s00170-018-2929-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 101 2018 5-8 21 11 1467-1479 |
spelling |
10.1007/s00170-018-2929-2 doi (DE-627)OLC2026133530 (DE-He213)s00170-018-2929-2-p DE-627 ger DE-627 rakwb eng 670 VZ Li, Deguo verfasserin aut Study on grinding force model in ultrasonic vibration-assisted grinding of alloy structural steel 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2018 Abstract Based on the micro-removal mechanism of the ultrasonic vibration-assisted grinding (UVAG), a new prediction model of alloy structural steel is proposed in this paper. In the grinding process, the abrasive grains mainly go through two stages: plowing stage and chip forming stage. Then, grinding force model of single grain under different material removal modes is established. The thickness of the abrasive grain, the number of grains involved in grinding, and the interference between the abrasive grains are essential factors that affect the grinding force. Considering the influence of ultrasonic vibration on these factors, the grinding force model of the grinding wheel is developed. The ultrasonic grinding experiments are conducted to validate this model. Findings show that the theoretically predicted results are consistent with the experimental results. Ultrasonic grinding Chip thickness Plowing Chip forming Grinding force Tang, Jinyuan aut Chen, Haifeng aut Shao, Wen aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 101(2018), 5-8 vom: 21. Nov., Seite 1467-1479 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:101 year:2018 number:5-8 day:21 month:11 pages:1467-1479 https://doi.org/10.1007/s00170-018-2929-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 101 2018 5-8 21 11 1467-1479 |
allfields_unstemmed |
10.1007/s00170-018-2929-2 doi (DE-627)OLC2026133530 (DE-He213)s00170-018-2929-2-p DE-627 ger DE-627 rakwb eng 670 VZ Li, Deguo verfasserin aut Study on grinding force model in ultrasonic vibration-assisted grinding of alloy structural steel 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2018 Abstract Based on the micro-removal mechanism of the ultrasonic vibration-assisted grinding (UVAG), a new prediction model of alloy structural steel is proposed in this paper. In the grinding process, the abrasive grains mainly go through two stages: plowing stage and chip forming stage. Then, grinding force model of single grain under different material removal modes is established. The thickness of the abrasive grain, the number of grains involved in grinding, and the interference between the abrasive grains are essential factors that affect the grinding force. Considering the influence of ultrasonic vibration on these factors, the grinding force model of the grinding wheel is developed. The ultrasonic grinding experiments are conducted to validate this model. Findings show that the theoretically predicted results are consistent with the experimental results. Ultrasonic grinding Chip thickness Plowing Chip forming Grinding force Tang, Jinyuan aut Chen, Haifeng aut Shao, Wen aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 101(2018), 5-8 vom: 21. Nov., Seite 1467-1479 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:101 year:2018 number:5-8 day:21 month:11 pages:1467-1479 https://doi.org/10.1007/s00170-018-2929-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 101 2018 5-8 21 11 1467-1479 |
allfieldsGer |
10.1007/s00170-018-2929-2 doi (DE-627)OLC2026133530 (DE-He213)s00170-018-2929-2-p DE-627 ger DE-627 rakwb eng 670 VZ Li, Deguo verfasserin aut Study on grinding force model in ultrasonic vibration-assisted grinding of alloy structural steel 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2018 Abstract Based on the micro-removal mechanism of the ultrasonic vibration-assisted grinding (UVAG), a new prediction model of alloy structural steel is proposed in this paper. In the grinding process, the abrasive grains mainly go through two stages: plowing stage and chip forming stage. Then, grinding force model of single grain under different material removal modes is established. The thickness of the abrasive grain, the number of grains involved in grinding, and the interference between the abrasive grains are essential factors that affect the grinding force. Considering the influence of ultrasonic vibration on these factors, the grinding force model of the grinding wheel is developed. The ultrasonic grinding experiments are conducted to validate this model. Findings show that the theoretically predicted results are consistent with the experimental results. Ultrasonic grinding Chip thickness Plowing Chip forming Grinding force Tang, Jinyuan aut Chen, Haifeng aut Shao, Wen aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 101(2018), 5-8 vom: 21. Nov., Seite 1467-1479 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:101 year:2018 number:5-8 day:21 month:11 pages:1467-1479 https://doi.org/10.1007/s00170-018-2929-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 101 2018 5-8 21 11 1467-1479 |
allfieldsSound |
10.1007/s00170-018-2929-2 doi (DE-627)OLC2026133530 (DE-He213)s00170-018-2929-2-p DE-627 ger DE-627 rakwb eng 670 VZ Li, Deguo verfasserin aut Study on grinding force model in ultrasonic vibration-assisted grinding of alloy structural steel 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2018 Abstract Based on the micro-removal mechanism of the ultrasonic vibration-assisted grinding (UVAG), a new prediction model of alloy structural steel is proposed in this paper. In the grinding process, the abrasive grains mainly go through two stages: plowing stage and chip forming stage. Then, grinding force model of single grain under different material removal modes is established. The thickness of the abrasive grain, the number of grains involved in grinding, and the interference between the abrasive grains are essential factors that affect the grinding force. Considering the influence of ultrasonic vibration on these factors, the grinding force model of the grinding wheel is developed. The ultrasonic grinding experiments are conducted to validate this model. Findings show that the theoretically predicted results are consistent with the experimental results. Ultrasonic grinding Chip thickness Plowing Chip forming Grinding force Tang, Jinyuan aut Chen, Haifeng aut Shao, Wen aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 101(2018), 5-8 vom: 21. Nov., Seite 1467-1479 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:101 year:2018 number:5-8 day:21 month:11 pages:1467-1479 https://doi.org/10.1007/s00170-018-2929-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 101 2018 5-8 21 11 1467-1479 |
language |
English |
source |
Enthalten in The international journal of advanced manufacturing technology 101(2018), 5-8 vom: 21. Nov., Seite 1467-1479 volume:101 year:2018 number:5-8 day:21 month:11 pages:1467-1479 |
sourceStr |
Enthalten in The international journal of advanced manufacturing technology 101(2018), 5-8 vom: 21. Nov., Seite 1467-1479 volume:101 year:2018 number:5-8 day:21 month:11 pages:1467-1479 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Ultrasonic grinding Chip thickness Plowing Chip forming Grinding force |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
The international journal of advanced manufacturing technology |
authorswithroles_txt_mv |
Li, Deguo @@aut@@ Tang, Jinyuan @@aut@@ Chen, Haifeng @@aut@@ Shao, Wen @@aut@@ |
publishDateDaySort_date |
2018-11-21T00:00:00Z |
hierarchy_top_id |
129185299 |
dewey-sort |
3670 |
id |
OLC2026133530 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026133530</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323141941.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-018-2929-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026133530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-018-2929-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Deguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on grinding force model in ultrasonic vibration-assisted grinding of alloy structural steel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Based on the micro-removal mechanism of the ultrasonic vibration-assisted grinding (UVAG), a new prediction model of alloy structural steel is proposed in this paper. In the grinding process, the abrasive grains mainly go through two stages: plowing stage and chip forming stage. Then, grinding force model of single grain under different material removal modes is established. The thickness of the abrasive grain, the number of grains involved in grinding, and the interference between the abrasive grains are essential factors that affect the grinding force. Considering the influence of ultrasonic vibration on these factors, the grinding force model of the grinding wheel is developed. The ultrasonic grinding experiments are conducted to validate this model. Findings show that the theoretically predicted results are consistent with the experimental results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrasonic grinding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chip thickness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plowing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chip forming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grinding force</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Jinyuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Haifeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shao, Wen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">101(2018), 5-8 vom: 21. Nov., Seite 1467-1479</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:101</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:5-8</subfield><subfield code="g">day:21</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:1467-1479</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-018-2929-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">101</subfield><subfield code="j">2018</subfield><subfield code="e">5-8</subfield><subfield code="b">21</subfield><subfield code="c">11</subfield><subfield code="h">1467-1479</subfield></datafield></record></collection>
|
author |
Li, Deguo |
spellingShingle |
Li, Deguo ddc 670 misc Ultrasonic grinding misc Chip thickness misc Plowing misc Chip forming misc Grinding force Study on grinding force model in ultrasonic vibration-assisted grinding of alloy structural steel |
authorStr |
Li, Deguo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129185299 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0268-3768 |
topic_title |
670 VZ Study on grinding force model in ultrasonic vibration-assisted grinding of alloy structural steel Ultrasonic grinding Chip thickness Plowing Chip forming Grinding force |
topic |
ddc 670 misc Ultrasonic grinding misc Chip thickness misc Plowing misc Chip forming misc Grinding force |
topic_unstemmed |
ddc 670 misc Ultrasonic grinding misc Chip thickness misc Plowing misc Chip forming misc Grinding force |
topic_browse |
ddc 670 misc Ultrasonic grinding misc Chip thickness misc Plowing misc Chip forming misc Grinding force |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The international journal of advanced manufacturing technology |
hierarchy_parent_id |
129185299 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
The international journal of advanced manufacturing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 |
title |
Study on grinding force model in ultrasonic vibration-assisted grinding of alloy structural steel |
ctrlnum |
(DE-627)OLC2026133530 (DE-He213)s00170-018-2929-2-p |
title_full |
Study on grinding force model in ultrasonic vibration-assisted grinding of alloy structural steel |
author_sort |
Li, Deguo |
journal |
The international journal of advanced manufacturing technology |
journalStr |
The international journal of advanced manufacturing technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
1467 |
author_browse |
Li, Deguo Tang, Jinyuan Chen, Haifeng Shao, Wen |
container_volume |
101 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Li, Deguo |
doi_str_mv |
10.1007/s00170-018-2929-2 |
dewey-full |
670 |
title_sort |
study on grinding force model in ultrasonic vibration-assisted grinding of alloy structural steel |
title_auth |
Study on grinding force model in ultrasonic vibration-assisted grinding of alloy structural steel |
abstract |
Abstract Based on the micro-removal mechanism of the ultrasonic vibration-assisted grinding (UVAG), a new prediction model of alloy structural steel is proposed in this paper. In the grinding process, the abrasive grains mainly go through two stages: plowing stage and chip forming stage. Then, grinding force model of single grain under different material removal modes is established. The thickness of the abrasive grain, the number of grains involved in grinding, and the interference between the abrasive grains are essential factors that affect the grinding force. Considering the influence of ultrasonic vibration on these factors, the grinding force model of the grinding wheel is developed. The ultrasonic grinding experiments are conducted to validate this model. Findings show that the theoretically predicted results are consistent with the experimental results. © Springer-Verlag London Ltd., part of Springer Nature 2018 |
abstractGer |
Abstract Based on the micro-removal mechanism of the ultrasonic vibration-assisted grinding (UVAG), a new prediction model of alloy structural steel is proposed in this paper. In the grinding process, the abrasive grains mainly go through two stages: plowing stage and chip forming stage. Then, grinding force model of single grain under different material removal modes is established. The thickness of the abrasive grain, the number of grains involved in grinding, and the interference between the abrasive grains are essential factors that affect the grinding force. Considering the influence of ultrasonic vibration on these factors, the grinding force model of the grinding wheel is developed. The ultrasonic grinding experiments are conducted to validate this model. Findings show that the theoretically predicted results are consistent with the experimental results. © Springer-Verlag London Ltd., part of Springer Nature 2018 |
abstract_unstemmed |
Abstract Based on the micro-removal mechanism of the ultrasonic vibration-assisted grinding (UVAG), a new prediction model of alloy structural steel is proposed in this paper. In the grinding process, the abrasive grains mainly go through two stages: plowing stage and chip forming stage. Then, grinding force model of single grain under different material removal modes is established. The thickness of the abrasive grain, the number of grains involved in grinding, and the interference between the abrasive grains are essential factors that affect the grinding force. Considering the influence of ultrasonic vibration on these factors, the grinding force model of the grinding wheel is developed. The ultrasonic grinding experiments are conducted to validate this model. Findings show that the theoretically predicted results are consistent with the experimental results. © Springer-Verlag London Ltd., part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 |
container_issue |
5-8 |
title_short |
Study on grinding force model in ultrasonic vibration-assisted grinding of alloy structural steel |
url |
https://doi.org/10.1007/s00170-018-2929-2 |
remote_bool |
false |
author2 |
Tang, Jinyuan Chen, Haifeng Shao, Wen |
author2Str |
Tang, Jinyuan Chen, Haifeng Shao, Wen |
ppnlink |
129185299 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00170-018-2929-2 |
up_date |
2024-07-04T03:11:43.498Z |
_version_ |
1803616469395701760 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026133530</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323141941.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-018-2929-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026133530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-018-2929-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Deguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on grinding force model in ultrasonic vibration-assisted grinding of alloy structural steel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Based on the micro-removal mechanism of the ultrasonic vibration-assisted grinding (UVAG), a new prediction model of alloy structural steel is proposed in this paper. In the grinding process, the abrasive grains mainly go through two stages: plowing stage and chip forming stage. Then, grinding force model of single grain under different material removal modes is established. The thickness of the abrasive grain, the number of grains involved in grinding, and the interference between the abrasive grains are essential factors that affect the grinding force. Considering the influence of ultrasonic vibration on these factors, the grinding force model of the grinding wheel is developed. The ultrasonic grinding experiments are conducted to validate this model. Findings show that the theoretically predicted results are consistent with the experimental results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrasonic grinding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chip thickness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plowing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chip forming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grinding force</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Jinyuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Haifeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shao, Wen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">101(2018), 5-8 vom: 21. Nov., Seite 1467-1479</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:101</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:5-8</subfield><subfield code="g">day:21</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:1467-1479</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-018-2929-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">101</subfield><subfield code="j">2018</subfield><subfield code="e">5-8</subfield><subfield code="b">21</subfield><subfield code="c">11</subfield><subfield code="h">1467-1479</subfield></datafield></record></collection>
|
score |
7.401189 |