A new approach to geometric error modeling and compensation for a three-axis machine tool
Abstract This paper proposes a new geometric error model and compensation algorithm for the three-axis machine tools. First, the relative motion matrix to the coordinate system is constructed by the homogenous transformation matrix (HTM). Next, the geometric error model is deduced based on homogenou...
Ausführliche Beschreibung
Autor*in: |
Wu, Baohai [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London Ltd., part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: The international journal of advanced manufacturing technology - Springer London, 1985, 102(2018), 5-8 vom: 14. Dez., Seite 1249-1256 |
---|---|
Übergeordnetes Werk: |
volume:102 ; year:2018 ; number:5-8 ; day:14 ; month:12 ; pages:1249-1256 |
Links: |
---|
DOI / URN: |
10.1007/s00170-018-3160-x |
---|
Katalog-ID: |
OLC2026136408 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026136408 | ||
003 | DE-627 | ||
005 | 20230323142012.0 | ||
007 | tu | ||
008 | 200820s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00170-018-3160-x |2 doi | |
035 | |a (DE-627)OLC2026136408 | ||
035 | |a (DE-He213)s00170-018-3160-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Wu, Baohai |e verfasserin |4 aut | |
245 | 1 | 0 | |a A new approach to geometric error modeling and compensation for a three-axis machine tool |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London Ltd., part of Springer Nature 2018 | ||
520 | |a Abstract This paper proposes a new geometric error model and compensation algorithm for the three-axis machine tools. First, the relative motion matrix to the coordinate system is constructed by the homogenous transformation matrix (HTM). Next, the geometric error model is deduced based on homogenous transformations. Then, an error compensation algorithm is developed by means of the computer numerical control (CNC) program reconstruction by using the geometric error model. Finally, the simulation is implemented on a virtual machine tool established in the VERICUT software to validate the efficiency of the model and the compensation algorithm. An autocollimator is used to measure the yaw errors and an experiment is implemented on a real machine tool. The results simulation and experiment indicate that the error modele and compensation algorithm can significantly improve the machining precision. | ||
650 | 4 | |a Geometric error | |
650 | 4 | |a Machine tool | |
650 | 4 | |a Error compensation | |
650 | 4 | |a Error modeling | |
700 | 1 | |a Yin, Yanjun |4 aut | |
700 | 1 | |a Zhang, Ying |4 aut | |
700 | 1 | |a Luo, Ming |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The international journal of advanced manufacturing technology |d Springer London, 1985 |g 102(2018), 5-8 vom: 14. Dez., Seite 1249-1256 |w (DE-627)129185299 |w (DE-600)52651-4 |w (DE-576)014456192 |x 0268-3768 |7 nnns |
773 | 1 | 8 | |g volume:102 |g year:2018 |g number:5-8 |g day:14 |g month:12 |g pages:1249-1256 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00170-018-3160-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2333 | ||
951 | |a AR | ||
952 | |d 102 |j 2018 |e 5-8 |b 14 |c 12 |h 1249-1256 |
author_variant |
b w bw y y yy y z yz m l ml |
---|---|
matchkey_str |
article:02683768:2018----::nwprahoemtierroeigncmestofr |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s00170-018-3160-x doi (DE-627)OLC2026136408 (DE-He213)s00170-018-3160-x-p DE-627 ger DE-627 rakwb eng 670 VZ Wu, Baohai verfasserin aut A new approach to geometric error modeling and compensation for a three-axis machine tool 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2018 Abstract This paper proposes a new geometric error model and compensation algorithm for the three-axis machine tools. First, the relative motion matrix to the coordinate system is constructed by the homogenous transformation matrix (HTM). Next, the geometric error model is deduced based on homogenous transformations. Then, an error compensation algorithm is developed by means of the computer numerical control (CNC) program reconstruction by using the geometric error model. Finally, the simulation is implemented on a virtual machine tool established in the VERICUT software to validate the efficiency of the model and the compensation algorithm. An autocollimator is used to measure the yaw errors and an experiment is implemented on a real machine tool. The results simulation and experiment indicate that the error modele and compensation algorithm can significantly improve the machining precision. Geometric error Machine tool Error compensation Error modeling Yin, Yanjun aut Zhang, Ying aut Luo, Ming aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 102(2018), 5-8 vom: 14. Dez., Seite 1249-1256 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:102 year:2018 number:5-8 day:14 month:12 pages:1249-1256 https://doi.org/10.1007/s00170-018-3160-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 102 2018 5-8 14 12 1249-1256 |
spelling |
10.1007/s00170-018-3160-x doi (DE-627)OLC2026136408 (DE-He213)s00170-018-3160-x-p DE-627 ger DE-627 rakwb eng 670 VZ Wu, Baohai verfasserin aut A new approach to geometric error modeling and compensation for a three-axis machine tool 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2018 Abstract This paper proposes a new geometric error model and compensation algorithm for the three-axis machine tools. First, the relative motion matrix to the coordinate system is constructed by the homogenous transformation matrix (HTM). Next, the geometric error model is deduced based on homogenous transformations. Then, an error compensation algorithm is developed by means of the computer numerical control (CNC) program reconstruction by using the geometric error model. Finally, the simulation is implemented on a virtual machine tool established in the VERICUT software to validate the efficiency of the model and the compensation algorithm. An autocollimator is used to measure the yaw errors and an experiment is implemented on a real machine tool. The results simulation and experiment indicate that the error modele and compensation algorithm can significantly improve the machining precision. Geometric error Machine tool Error compensation Error modeling Yin, Yanjun aut Zhang, Ying aut Luo, Ming aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 102(2018), 5-8 vom: 14. Dez., Seite 1249-1256 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:102 year:2018 number:5-8 day:14 month:12 pages:1249-1256 https://doi.org/10.1007/s00170-018-3160-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 102 2018 5-8 14 12 1249-1256 |
allfields_unstemmed |
10.1007/s00170-018-3160-x doi (DE-627)OLC2026136408 (DE-He213)s00170-018-3160-x-p DE-627 ger DE-627 rakwb eng 670 VZ Wu, Baohai verfasserin aut A new approach to geometric error modeling and compensation for a three-axis machine tool 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2018 Abstract This paper proposes a new geometric error model and compensation algorithm for the three-axis machine tools. First, the relative motion matrix to the coordinate system is constructed by the homogenous transformation matrix (HTM). Next, the geometric error model is deduced based on homogenous transformations. Then, an error compensation algorithm is developed by means of the computer numerical control (CNC) program reconstruction by using the geometric error model. Finally, the simulation is implemented on a virtual machine tool established in the VERICUT software to validate the efficiency of the model and the compensation algorithm. An autocollimator is used to measure the yaw errors and an experiment is implemented on a real machine tool. The results simulation and experiment indicate that the error modele and compensation algorithm can significantly improve the machining precision. Geometric error Machine tool Error compensation Error modeling Yin, Yanjun aut Zhang, Ying aut Luo, Ming aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 102(2018), 5-8 vom: 14. Dez., Seite 1249-1256 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:102 year:2018 number:5-8 day:14 month:12 pages:1249-1256 https://doi.org/10.1007/s00170-018-3160-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 102 2018 5-8 14 12 1249-1256 |
allfieldsGer |
10.1007/s00170-018-3160-x doi (DE-627)OLC2026136408 (DE-He213)s00170-018-3160-x-p DE-627 ger DE-627 rakwb eng 670 VZ Wu, Baohai verfasserin aut A new approach to geometric error modeling and compensation for a three-axis machine tool 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2018 Abstract This paper proposes a new geometric error model and compensation algorithm for the three-axis machine tools. First, the relative motion matrix to the coordinate system is constructed by the homogenous transformation matrix (HTM). Next, the geometric error model is deduced based on homogenous transformations. Then, an error compensation algorithm is developed by means of the computer numerical control (CNC) program reconstruction by using the geometric error model. Finally, the simulation is implemented on a virtual machine tool established in the VERICUT software to validate the efficiency of the model and the compensation algorithm. An autocollimator is used to measure the yaw errors and an experiment is implemented on a real machine tool. The results simulation and experiment indicate that the error modele and compensation algorithm can significantly improve the machining precision. Geometric error Machine tool Error compensation Error modeling Yin, Yanjun aut Zhang, Ying aut Luo, Ming aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 102(2018), 5-8 vom: 14. Dez., Seite 1249-1256 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:102 year:2018 number:5-8 day:14 month:12 pages:1249-1256 https://doi.org/10.1007/s00170-018-3160-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 102 2018 5-8 14 12 1249-1256 |
allfieldsSound |
10.1007/s00170-018-3160-x doi (DE-627)OLC2026136408 (DE-He213)s00170-018-3160-x-p DE-627 ger DE-627 rakwb eng 670 VZ Wu, Baohai verfasserin aut A new approach to geometric error modeling and compensation for a three-axis machine tool 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2018 Abstract This paper proposes a new geometric error model and compensation algorithm for the three-axis machine tools. First, the relative motion matrix to the coordinate system is constructed by the homogenous transformation matrix (HTM). Next, the geometric error model is deduced based on homogenous transformations. Then, an error compensation algorithm is developed by means of the computer numerical control (CNC) program reconstruction by using the geometric error model. Finally, the simulation is implemented on a virtual machine tool established in the VERICUT software to validate the efficiency of the model and the compensation algorithm. An autocollimator is used to measure the yaw errors and an experiment is implemented on a real machine tool. The results simulation and experiment indicate that the error modele and compensation algorithm can significantly improve the machining precision. Geometric error Machine tool Error compensation Error modeling Yin, Yanjun aut Zhang, Ying aut Luo, Ming aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 102(2018), 5-8 vom: 14. Dez., Seite 1249-1256 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:102 year:2018 number:5-8 day:14 month:12 pages:1249-1256 https://doi.org/10.1007/s00170-018-3160-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 102 2018 5-8 14 12 1249-1256 |
language |
English |
source |
Enthalten in The international journal of advanced manufacturing technology 102(2018), 5-8 vom: 14. Dez., Seite 1249-1256 volume:102 year:2018 number:5-8 day:14 month:12 pages:1249-1256 |
sourceStr |
Enthalten in The international journal of advanced manufacturing technology 102(2018), 5-8 vom: 14. Dez., Seite 1249-1256 volume:102 year:2018 number:5-8 day:14 month:12 pages:1249-1256 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Geometric error Machine tool Error compensation Error modeling |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
The international journal of advanced manufacturing technology |
authorswithroles_txt_mv |
Wu, Baohai @@aut@@ Yin, Yanjun @@aut@@ Zhang, Ying @@aut@@ Luo, Ming @@aut@@ |
publishDateDaySort_date |
2018-12-14T00:00:00Z |
hierarchy_top_id |
129185299 |
dewey-sort |
3670 |
id |
OLC2026136408 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026136408</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323142012.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-018-3160-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026136408</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-018-3160-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Baohai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A new approach to geometric error modeling and compensation for a three-axis machine tool</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper proposes a new geometric error model and compensation algorithm for the three-axis machine tools. First, the relative motion matrix to the coordinate system is constructed by the homogenous transformation matrix (HTM). Next, the geometric error model is deduced based on homogenous transformations. Then, an error compensation algorithm is developed by means of the computer numerical control (CNC) program reconstruction by using the geometric error model. Finally, the simulation is implemented on a virtual machine tool established in the VERICUT software to validate the efficiency of the model and the compensation algorithm. An autocollimator is used to measure the yaw errors and an experiment is implemented on a real machine tool. The results simulation and experiment indicate that the error modele and compensation algorithm can significantly improve the machining precision.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric error</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine tool</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Error compensation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Error modeling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Yanjun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Ying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Ming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">102(2018), 5-8 vom: 14. Dez., Seite 1249-1256</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:102</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:5-8</subfield><subfield code="g">day:14</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1249-1256</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-018-3160-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">102</subfield><subfield code="j">2018</subfield><subfield code="e">5-8</subfield><subfield code="b">14</subfield><subfield code="c">12</subfield><subfield code="h">1249-1256</subfield></datafield></record></collection>
|
author |
Wu, Baohai |
spellingShingle |
Wu, Baohai ddc 670 misc Geometric error misc Machine tool misc Error compensation misc Error modeling A new approach to geometric error modeling and compensation for a three-axis machine tool |
authorStr |
Wu, Baohai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129185299 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0268-3768 |
topic_title |
670 VZ A new approach to geometric error modeling and compensation for a three-axis machine tool Geometric error Machine tool Error compensation Error modeling |
topic |
ddc 670 misc Geometric error misc Machine tool misc Error compensation misc Error modeling |
topic_unstemmed |
ddc 670 misc Geometric error misc Machine tool misc Error compensation misc Error modeling |
topic_browse |
ddc 670 misc Geometric error misc Machine tool misc Error compensation misc Error modeling |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The international journal of advanced manufacturing technology |
hierarchy_parent_id |
129185299 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
The international journal of advanced manufacturing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 |
title |
A new approach to geometric error modeling and compensation for a three-axis machine tool |
ctrlnum |
(DE-627)OLC2026136408 (DE-He213)s00170-018-3160-x-p |
title_full |
A new approach to geometric error modeling and compensation for a three-axis machine tool |
author_sort |
Wu, Baohai |
journal |
The international journal of advanced manufacturing technology |
journalStr |
The international journal of advanced manufacturing technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
1249 |
author_browse |
Wu, Baohai Yin, Yanjun Zhang, Ying Luo, Ming |
container_volume |
102 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Wu, Baohai |
doi_str_mv |
10.1007/s00170-018-3160-x |
dewey-full |
670 |
title_sort |
a new approach to geometric error modeling and compensation for a three-axis machine tool |
title_auth |
A new approach to geometric error modeling and compensation for a three-axis machine tool |
abstract |
Abstract This paper proposes a new geometric error model and compensation algorithm for the three-axis machine tools. First, the relative motion matrix to the coordinate system is constructed by the homogenous transformation matrix (HTM). Next, the geometric error model is deduced based on homogenous transformations. Then, an error compensation algorithm is developed by means of the computer numerical control (CNC) program reconstruction by using the geometric error model. Finally, the simulation is implemented on a virtual machine tool established in the VERICUT software to validate the efficiency of the model and the compensation algorithm. An autocollimator is used to measure the yaw errors and an experiment is implemented on a real machine tool. The results simulation and experiment indicate that the error modele and compensation algorithm can significantly improve the machining precision. © Springer-Verlag London Ltd., part of Springer Nature 2018 |
abstractGer |
Abstract This paper proposes a new geometric error model and compensation algorithm for the three-axis machine tools. First, the relative motion matrix to the coordinate system is constructed by the homogenous transformation matrix (HTM). Next, the geometric error model is deduced based on homogenous transformations. Then, an error compensation algorithm is developed by means of the computer numerical control (CNC) program reconstruction by using the geometric error model. Finally, the simulation is implemented on a virtual machine tool established in the VERICUT software to validate the efficiency of the model and the compensation algorithm. An autocollimator is used to measure the yaw errors and an experiment is implemented on a real machine tool. The results simulation and experiment indicate that the error modele and compensation algorithm can significantly improve the machining precision. © Springer-Verlag London Ltd., part of Springer Nature 2018 |
abstract_unstemmed |
Abstract This paper proposes a new geometric error model and compensation algorithm for the three-axis machine tools. First, the relative motion matrix to the coordinate system is constructed by the homogenous transformation matrix (HTM). Next, the geometric error model is deduced based on homogenous transformations. Then, an error compensation algorithm is developed by means of the computer numerical control (CNC) program reconstruction by using the geometric error model. Finally, the simulation is implemented on a virtual machine tool established in the VERICUT software to validate the efficiency of the model and the compensation algorithm. An autocollimator is used to measure the yaw errors and an experiment is implemented on a real machine tool. The results simulation and experiment indicate that the error modele and compensation algorithm can significantly improve the machining precision. © Springer-Verlag London Ltd., part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 |
container_issue |
5-8 |
title_short |
A new approach to geometric error modeling and compensation for a three-axis machine tool |
url |
https://doi.org/10.1007/s00170-018-3160-x |
remote_bool |
false |
author2 |
Yin, Yanjun Zhang, Ying Luo, Ming |
author2Str |
Yin, Yanjun Zhang, Ying Luo, Ming |
ppnlink |
129185299 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00170-018-3160-x |
up_date |
2024-07-04T03:12:09.769Z |
_version_ |
1803616496947036160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026136408</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323142012.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-018-3160-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026136408</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-018-3160-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Baohai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A new approach to geometric error modeling and compensation for a three-axis machine tool</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper proposes a new geometric error model and compensation algorithm for the three-axis machine tools. First, the relative motion matrix to the coordinate system is constructed by the homogenous transformation matrix (HTM). Next, the geometric error model is deduced based on homogenous transformations. Then, an error compensation algorithm is developed by means of the computer numerical control (CNC) program reconstruction by using the geometric error model. Finally, the simulation is implemented on a virtual machine tool established in the VERICUT software to validate the efficiency of the model and the compensation algorithm. An autocollimator is used to measure the yaw errors and an experiment is implemented on a real machine tool. The results simulation and experiment indicate that the error modele and compensation algorithm can significantly improve the machining precision.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric error</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine tool</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Error compensation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Error modeling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Yanjun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Ying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Ming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">102(2018), 5-8 vom: 14. Dez., Seite 1249-1256</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:102</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:5-8</subfield><subfield code="g">day:14</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1249-1256</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-018-3160-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">102</subfield><subfield code="j">2018</subfield><subfield code="e">5-8</subfield><subfield code="b">14</subfield><subfield code="c">12</subfield><subfield code="h">1249-1256</subfield></datafield></record></collection>
|
score |
7.399684 |