Prediction of surface variation field in face milling via finite element model updating with considering force-deformation coupling
Abstract Effective prediction of surface variation is of great helpf for developing and controlling machining process to maintain surface quality during face milling of large-scale component with discontinuous surface. However, the simulation ranges of machined surface error in traditional finite el...
Ausführliche Beschreibung
Autor*in: |
Liu, Shun [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London Ltd., part of Springer Nature 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: The international journal of advanced manufacturing technology - Springer London, 1985, 105(2019), 10 vom: 13. Nov., Seite 4193-4209 |
---|---|
Übergeordnetes Werk: |
volume:105 ; year:2019 ; number:10 ; day:13 ; month:11 ; pages:4193-4209 |
Links: |
---|
DOI / URN: |
10.1007/s00170-019-04448-w |
---|
Katalog-ID: |
OLC2026148163 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026148163 | ||
003 | DE-627 | ||
005 | 20230323142248.0 | ||
007 | tu | ||
008 | 200820s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00170-019-04448-w |2 doi | |
035 | |a (DE-627)OLC2026148163 | ||
035 | |a (DE-He213)s00170-019-04448-w-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Liu, Shun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Prediction of surface variation field in face milling via finite element model updating with considering force-deformation coupling |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London Ltd., part of Springer Nature 2019 | ||
520 | |a Abstract Effective prediction of surface variation is of great helpf for developing and controlling machining process to maintain surface quality during face milling of large-scale component with discontinuous surface. However, the simulation ranges of machined surface error in traditional finite element analyses are far less than those needed in characterization of large-scale face milling with multi-tooth cutter in order to maintain efficiency. To address this issue, this paper attempts to develop a numerical methodology to estimate the field data of machined surface error based on iterative finite element analysis integrated with cutting trajectory reconfiguration. Finite element model updating (FEMU) method is applied to analysis the cutting deformation in each cutting instant while considering both the cutting force variation in face milling and the locally geometrical differences of component. A flexible model is established to predict the residual cutting material in each cutting instant with considering the coupling effect between instantaneous cutting force and cutting deformation. And then a sub-iteration scheme is proposed to calculate the equilibrium deflection and the real residual material of flexible cutting system with a modified Newton-Raphson method. The proposed simulation methodology can be generally applied for predicting surface variation field in face milling of large-scale component with multi-holed surface, especially for flexible component. | ||
650 | 4 | |a Surface variation field | |
650 | 4 | |a Cutting force | |
650 | 4 | |a Flexible model | |
650 | 4 | |a Finite element model updating | |
650 | 4 | |a Face milling | |
700 | 1 | |a Zhang, Xueping |4 aut | |
700 | 1 | |a Jin, Sun |4 aut | |
700 | 1 | |a Tian, Ang |4 aut | |
700 | 1 | |a Chen, Kun |4 aut | |
700 | 1 | |a Xi, Lifeng |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The international journal of advanced manufacturing technology |d Springer London, 1985 |g 105(2019), 10 vom: 13. Nov., Seite 4193-4209 |w (DE-627)129185299 |w (DE-600)52651-4 |w (DE-576)014456192 |x 0268-3768 |7 nnns |
773 | 1 | 8 | |g volume:105 |g year:2019 |g number:10 |g day:13 |g month:11 |g pages:4193-4209 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00170-019-04448-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2333 | ||
951 | |a AR | ||
952 | |d 105 |j 2019 |e 10 |b 13 |c 11 |h 4193-4209 |
author_variant |
s l sl x z xz s j sj a t at k c kc l x lx |
---|---|
matchkey_str |
article:02683768:2019----::rdcinfufcvrainilifcmligifnteeetoeudtnwtcni |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s00170-019-04448-w doi (DE-627)OLC2026148163 (DE-He213)s00170-019-04448-w-p DE-627 ger DE-627 rakwb eng 670 VZ Liu, Shun verfasserin aut Prediction of surface variation field in face milling via finite element model updating with considering force-deformation coupling 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract Effective prediction of surface variation is of great helpf for developing and controlling machining process to maintain surface quality during face milling of large-scale component with discontinuous surface. However, the simulation ranges of machined surface error in traditional finite element analyses are far less than those needed in characterization of large-scale face milling with multi-tooth cutter in order to maintain efficiency. To address this issue, this paper attempts to develop a numerical methodology to estimate the field data of machined surface error based on iterative finite element analysis integrated with cutting trajectory reconfiguration. Finite element model updating (FEMU) method is applied to analysis the cutting deformation in each cutting instant while considering both the cutting force variation in face milling and the locally geometrical differences of component. A flexible model is established to predict the residual cutting material in each cutting instant with considering the coupling effect between instantaneous cutting force and cutting deformation. And then a sub-iteration scheme is proposed to calculate the equilibrium deflection and the real residual material of flexible cutting system with a modified Newton-Raphson method. The proposed simulation methodology can be generally applied for predicting surface variation field in face milling of large-scale component with multi-holed surface, especially for flexible component. Surface variation field Cutting force Flexible model Finite element model updating Face milling Zhang, Xueping aut Jin, Sun aut Tian, Ang aut Chen, Kun aut Xi, Lifeng aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 105(2019), 10 vom: 13. Nov., Seite 4193-4209 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:105 year:2019 number:10 day:13 month:11 pages:4193-4209 https://doi.org/10.1007/s00170-019-04448-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 105 2019 10 13 11 4193-4209 |
spelling |
10.1007/s00170-019-04448-w doi (DE-627)OLC2026148163 (DE-He213)s00170-019-04448-w-p DE-627 ger DE-627 rakwb eng 670 VZ Liu, Shun verfasserin aut Prediction of surface variation field in face milling via finite element model updating with considering force-deformation coupling 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract Effective prediction of surface variation is of great helpf for developing and controlling machining process to maintain surface quality during face milling of large-scale component with discontinuous surface. However, the simulation ranges of machined surface error in traditional finite element analyses are far less than those needed in characterization of large-scale face milling with multi-tooth cutter in order to maintain efficiency. To address this issue, this paper attempts to develop a numerical methodology to estimate the field data of machined surface error based on iterative finite element analysis integrated with cutting trajectory reconfiguration. Finite element model updating (FEMU) method is applied to analysis the cutting deformation in each cutting instant while considering both the cutting force variation in face milling and the locally geometrical differences of component. A flexible model is established to predict the residual cutting material in each cutting instant with considering the coupling effect between instantaneous cutting force and cutting deformation. And then a sub-iteration scheme is proposed to calculate the equilibrium deflection and the real residual material of flexible cutting system with a modified Newton-Raphson method. The proposed simulation methodology can be generally applied for predicting surface variation field in face milling of large-scale component with multi-holed surface, especially for flexible component. Surface variation field Cutting force Flexible model Finite element model updating Face milling Zhang, Xueping aut Jin, Sun aut Tian, Ang aut Chen, Kun aut Xi, Lifeng aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 105(2019), 10 vom: 13. Nov., Seite 4193-4209 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:105 year:2019 number:10 day:13 month:11 pages:4193-4209 https://doi.org/10.1007/s00170-019-04448-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 105 2019 10 13 11 4193-4209 |
allfields_unstemmed |
10.1007/s00170-019-04448-w doi (DE-627)OLC2026148163 (DE-He213)s00170-019-04448-w-p DE-627 ger DE-627 rakwb eng 670 VZ Liu, Shun verfasserin aut Prediction of surface variation field in face milling via finite element model updating with considering force-deformation coupling 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract Effective prediction of surface variation is of great helpf for developing and controlling machining process to maintain surface quality during face milling of large-scale component with discontinuous surface. However, the simulation ranges of machined surface error in traditional finite element analyses are far less than those needed in characterization of large-scale face milling with multi-tooth cutter in order to maintain efficiency. To address this issue, this paper attempts to develop a numerical methodology to estimate the field data of machined surface error based on iterative finite element analysis integrated with cutting trajectory reconfiguration. Finite element model updating (FEMU) method is applied to analysis the cutting deformation in each cutting instant while considering both the cutting force variation in face milling and the locally geometrical differences of component. A flexible model is established to predict the residual cutting material in each cutting instant with considering the coupling effect between instantaneous cutting force and cutting deformation. And then a sub-iteration scheme is proposed to calculate the equilibrium deflection and the real residual material of flexible cutting system with a modified Newton-Raphson method. The proposed simulation methodology can be generally applied for predicting surface variation field in face milling of large-scale component with multi-holed surface, especially for flexible component. Surface variation field Cutting force Flexible model Finite element model updating Face milling Zhang, Xueping aut Jin, Sun aut Tian, Ang aut Chen, Kun aut Xi, Lifeng aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 105(2019), 10 vom: 13. Nov., Seite 4193-4209 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:105 year:2019 number:10 day:13 month:11 pages:4193-4209 https://doi.org/10.1007/s00170-019-04448-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 105 2019 10 13 11 4193-4209 |
allfieldsGer |
10.1007/s00170-019-04448-w doi (DE-627)OLC2026148163 (DE-He213)s00170-019-04448-w-p DE-627 ger DE-627 rakwb eng 670 VZ Liu, Shun verfasserin aut Prediction of surface variation field in face milling via finite element model updating with considering force-deformation coupling 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract Effective prediction of surface variation is of great helpf for developing and controlling machining process to maintain surface quality during face milling of large-scale component with discontinuous surface. However, the simulation ranges of machined surface error in traditional finite element analyses are far less than those needed in characterization of large-scale face milling with multi-tooth cutter in order to maintain efficiency. To address this issue, this paper attempts to develop a numerical methodology to estimate the field data of machined surface error based on iterative finite element analysis integrated with cutting trajectory reconfiguration. Finite element model updating (FEMU) method is applied to analysis the cutting deformation in each cutting instant while considering both the cutting force variation in face milling and the locally geometrical differences of component. A flexible model is established to predict the residual cutting material in each cutting instant with considering the coupling effect between instantaneous cutting force and cutting deformation. And then a sub-iteration scheme is proposed to calculate the equilibrium deflection and the real residual material of flexible cutting system with a modified Newton-Raphson method. The proposed simulation methodology can be generally applied for predicting surface variation field in face milling of large-scale component with multi-holed surface, especially for flexible component. Surface variation field Cutting force Flexible model Finite element model updating Face milling Zhang, Xueping aut Jin, Sun aut Tian, Ang aut Chen, Kun aut Xi, Lifeng aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 105(2019), 10 vom: 13. Nov., Seite 4193-4209 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:105 year:2019 number:10 day:13 month:11 pages:4193-4209 https://doi.org/10.1007/s00170-019-04448-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 105 2019 10 13 11 4193-4209 |
allfieldsSound |
10.1007/s00170-019-04448-w doi (DE-627)OLC2026148163 (DE-He213)s00170-019-04448-w-p DE-627 ger DE-627 rakwb eng 670 VZ Liu, Shun verfasserin aut Prediction of surface variation field in face milling via finite element model updating with considering force-deformation coupling 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2019 Abstract Effective prediction of surface variation is of great helpf for developing and controlling machining process to maintain surface quality during face milling of large-scale component with discontinuous surface. However, the simulation ranges of machined surface error in traditional finite element analyses are far less than those needed in characterization of large-scale face milling with multi-tooth cutter in order to maintain efficiency. To address this issue, this paper attempts to develop a numerical methodology to estimate the field data of machined surface error based on iterative finite element analysis integrated with cutting trajectory reconfiguration. Finite element model updating (FEMU) method is applied to analysis the cutting deformation in each cutting instant while considering both the cutting force variation in face milling and the locally geometrical differences of component. A flexible model is established to predict the residual cutting material in each cutting instant with considering the coupling effect between instantaneous cutting force and cutting deformation. And then a sub-iteration scheme is proposed to calculate the equilibrium deflection and the real residual material of flexible cutting system with a modified Newton-Raphson method. The proposed simulation methodology can be generally applied for predicting surface variation field in face milling of large-scale component with multi-holed surface, especially for flexible component. Surface variation field Cutting force Flexible model Finite element model updating Face milling Zhang, Xueping aut Jin, Sun aut Tian, Ang aut Chen, Kun aut Xi, Lifeng aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 105(2019), 10 vom: 13. Nov., Seite 4193-4209 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:105 year:2019 number:10 day:13 month:11 pages:4193-4209 https://doi.org/10.1007/s00170-019-04448-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 AR 105 2019 10 13 11 4193-4209 |
language |
English |
source |
Enthalten in The international journal of advanced manufacturing technology 105(2019), 10 vom: 13. Nov., Seite 4193-4209 volume:105 year:2019 number:10 day:13 month:11 pages:4193-4209 |
sourceStr |
Enthalten in The international journal of advanced manufacturing technology 105(2019), 10 vom: 13. Nov., Seite 4193-4209 volume:105 year:2019 number:10 day:13 month:11 pages:4193-4209 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Surface variation field Cutting force Flexible model Finite element model updating Face milling |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
The international journal of advanced manufacturing technology |
authorswithroles_txt_mv |
Liu, Shun @@aut@@ Zhang, Xueping @@aut@@ Jin, Sun @@aut@@ Tian, Ang @@aut@@ Chen, Kun @@aut@@ Xi, Lifeng @@aut@@ |
publishDateDaySort_date |
2019-11-13T00:00:00Z |
hierarchy_top_id |
129185299 |
dewey-sort |
3670 |
id |
OLC2026148163 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026148163</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323142248.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-019-04448-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026148163</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-019-04448-w-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Shun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prediction of surface variation field in face milling via finite element model updating with considering force-deformation coupling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Effective prediction of surface variation is of great helpf for developing and controlling machining process to maintain surface quality during face milling of large-scale component with discontinuous surface. However, the simulation ranges of machined surface error in traditional finite element analyses are far less than those needed in characterization of large-scale face milling with multi-tooth cutter in order to maintain efficiency. To address this issue, this paper attempts to develop a numerical methodology to estimate the field data of machined surface error based on iterative finite element analysis integrated with cutting trajectory reconfiguration. Finite element model updating (FEMU) method is applied to analysis the cutting deformation in each cutting instant while considering both the cutting force variation in face milling and the locally geometrical differences of component. A flexible model is established to predict the residual cutting material in each cutting instant with considering the coupling effect between instantaneous cutting force and cutting deformation. And then a sub-iteration scheme is proposed to calculate the equilibrium deflection and the real residual material of flexible cutting system with a modified Newton-Raphson method. The proposed simulation methodology can be generally applied for predicting surface variation field in face milling of large-scale component with multi-holed surface, especially for flexible component.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface variation field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cutting force</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flexible model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element model updating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Face milling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xueping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Sun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Ang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Kun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xi, Lifeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">105(2019), 10 vom: 13. Nov., Seite 4193-4209</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:105</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:10</subfield><subfield code="g">day:13</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:4193-4209</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-019-04448-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">105</subfield><subfield code="j">2019</subfield><subfield code="e">10</subfield><subfield code="b">13</subfield><subfield code="c">11</subfield><subfield code="h">4193-4209</subfield></datafield></record></collection>
|
author |
Liu, Shun |
spellingShingle |
Liu, Shun ddc 670 misc Surface variation field misc Cutting force misc Flexible model misc Finite element model updating misc Face milling Prediction of surface variation field in face milling via finite element model updating with considering force-deformation coupling |
authorStr |
Liu, Shun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129185299 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0268-3768 |
topic_title |
670 VZ Prediction of surface variation field in face milling via finite element model updating with considering force-deformation coupling Surface variation field Cutting force Flexible model Finite element model updating Face milling |
topic |
ddc 670 misc Surface variation field misc Cutting force misc Flexible model misc Finite element model updating misc Face milling |
topic_unstemmed |
ddc 670 misc Surface variation field misc Cutting force misc Flexible model misc Finite element model updating misc Face milling |
topic_browse |
ddc 670 misc Surface variation field misc Cutting force misc Flexible model misc Finite element model updating misc Face milling |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The international journal of advanced manufacturing technology |
hierarchy_parent_id |
129185299 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
The international journal of advanced manufacturing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 |
title |
Prediction of surface variation field in face milling via finite element model updating with considering force-deformation coupling |
ctrlnum |
(DE-627)OLC2026148163 (DE-He213)s00170-019-04448-w-p |
title_full |
Prediction of surface variation field in face milling via finite element model updating with considering force-deformation coupling |
author_sort |
Liu, Shun |
journal |
The international journal of advanced manufacturing technology |
journalStr |
The international journal of advanced manufacturing technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
4193 |
author_browse |
Liu, Shun Zhang, Xueping Jin, Sun Tian, Ang Chen, Kun Xi, Lifeng |
container_volume |
105 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Liu, Shun |
doi_str_mv |
10.1007/s00170-019-04448-w |
dewey-full |
670 |
title_sort |
prediction of surface variation field in face milling via finite element model updating with considering force-deformation coupling |
title_auth |
Prediction of surface variation field in face milling via finite element model updating with considering force-deformation coupling |
abstract |
Abstract Effective prediction of surface variation is of great helpf for developing and controlling machining process to maintain surface quality during face milling of large-scale component with discontinuous surface. However, the simulation ranges of machined surface error in traditional finite element analyses are far less than those needed in characterization of large-scale face milling with multi-tooth cutter in order to maintain efficiency. To address this issue, this paper attempts to develop a numerical methodology to estimate the field data of machined surface error based on iterative finite element analysis integrated with cutting trajectory reconfiguration. Finite element model updating (FEMU) method is applied to analysis the cutting deformation in each cutting instant while considering both the cutting force variation in face milling and the locally geometrical differences of component. A flexible model is established to predict the residual cutting material in each cutting instant with considering the coupling effect between instantaneous cutting force and cutting deformation. And then a sub-iteration scheme is proposed to calculate the equilibrium deflection and the real residual material of flexible cutting system with a modified Newton-Raphson method. The proposed simulation methodology can be generally applied for predicting surface variation field in face milling of large-scale component with multi-holed surface, especially for flexible component. © Springer-Verlag London Ltd., part of Springer Nature 2019 |
abstractGer |
Abstract Effective prediction of surface variation is of great helpf for developing and controlling machining process to maintain surface quality during face milling of large-scale component with discontinuous surface. However, the simulation ranges of machined surface error in traditional finite element analyses are far less than those needed in characterization of large-scale face milling with multi-tooth cutter in order to maintain efficiency. To address this issue, this paper attempts to develop a numerical methodology to estimate the field data of machined surface error based on iterative finite element analysis integrated with cutting trajectory reconfiguration. Finite element model updating (FEMU) method is applied to analysis the cutting deformation in each cutting instant while considering both the cutting force variation in face milling and the locally geometrical differences of component. A flexible model is established to predict the residual cutting material in each cutting instant with considering the coupling effect between instantaneous cutting force and cutting deformation. And then a sub-iteration scheme is proposed to calculate the equilibrium deflection and the real residual material of flexible cutting system with a modified Newton-Raphson method. The proposed simulation methodology can be generally applied for predicting surface variation field in face milling of large-scale component with multi-holed surface, especially for flexible component. © Springer-Verlag London Ltd., part of Springer Nature 2019 |
abstract_unstemmed |
Abstract Effective prediction of surface variation is of great helpf for developing and controlling machining process to maintain surface quality during face milling of large-scale component with discontinuous surface. However, the simulation ranges of machined surface error in traditional finite element analyses are far less than those needed in characterization of large-scale face milling with multi-tooth cutter in order to maintain efficiency. To address this issue, this paper attempts to develop a numerical methodology to estimate the field data of machined surface error based on iterative finite element analysis integrated with cutting trajectory reconfiguration. Finite element model updating (FEMU) method is applied to analysis the cutting deformation in each cutting instant while considering both the cutting force variation in face milling and the locally geometrical differences of component. A flexible model is established to predict the residual cutting material in each cutting instant with considering the coupling effect between instantaneous cutting force and cutting deformation. And then a sub-iteration scheme is proposed to calculate the equilibrium deflection and the real residual material of flexible cutting system with a modified Newton-Raphson method. The proposed simulation methodology can be generally applied for predicting surface variation field in face milling of large-scale component with multi-holed surface, especially for flexible component. © Springer-Verlag London Ltd., part of Springer Nature 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2018 GBV_ILN_2333 |
container_issue |
10 |
title_short |
Prediction of surface variation field in face milling via finite element model updating with considering force-deformation coupling |
url |
https://doi.org/10.1007/s00170-019-04448-w |
remote_bool |
false |
author2 |
Zhang, Xueping Jin, Sun Tian, Ang Chen, Kun Xi, Lifeng |
author2Str |
Zhang, Xueping Jin, Sun Tian, Ang Chen, Kun Xi, Lifeng |
ppnlink |
129185299 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00170-019-04448-w |
up_date |
2024-07-04T03:14:02.570Z |
_version_ |
1803616615223263232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026148163</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323142248.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-019-04448-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026148163</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-019-04448-w-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Shun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prediction of surface variation field in face milling via finite element model updating with considering force-deformation coupling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Effective prediction of surface variation is of great helpf for developing and controlling machining process to maintain surface quality during face milling of large-scale component with discontinuous surface. However, the simulation ranges of machined surface error in traditional finite element analyses are far less than those needed in characterization of large-scale face milling with multi-tooth cutter in order to maintain efficiency. To address this issue, this paper attempts to develop a numerical methodology to estimate the field data of machined surface error based on iterative finite element analysis integrated with cutting trajectory reconfiguration. Finite element model updating (FEMU) method is applied to analysis the cutting deformation in each cutting instant while considering both the cutting force variation in face milling and the locally geometrical differences of component. A flexible model is established to predict the residual cutting material in each cutting instant with considering the coupling effect between instantaneous cutting force and cutting deformation. And then a sub-iteration scheme is proposed to calculate the equilibrium deflection and the real residual material of flexible cutting system with a modified Newton-Raphson method. The proposed simulation methodology can be generally applied for predicting surface variation field in face milling of large-scale component with multi-holed surface, especially for flexible component.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface variation field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cutting force</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flexible model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element model updating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Face milling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xueping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jin, Sun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Ang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Kun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xi, Lifeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">105(2019), 10 vom: 13. Nov., Seite 4193-4209</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:105</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:10</subfield><subfield code="g">day:13</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:4193-4209</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-019-04448-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">105</subfield><subfield code="j">2019</subfield><subfield code="e">10</subfield><subfield code="b">13</subfield><subfield code="c">11</subfield><subfield code="h">4193-4209</subfield></datafield></record></collection>
|
score |
7.4017096 |