A method for tracing key geometric errors of vertical machining center based on global sensitivity analysis
Abstract This paper proposes a method for tracing key geometric errors of vertical machining centers based on global sensitivity analysis in order to address inconsistent dimensions associated with sensitivity coefficients, random analytical variables, and geometric errors across different positions...
Ausführliche Beschreibung
Autor*in: |
Wu, Haorong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London Ltd., part of Springer Nature 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: The international journal of advanced manufacturing technology - Springer London, 1985, 106(2020), 9-10 vom: 10. Jan., Seite 3943-3956 |
---|---|
Übergeordnetes Werk: |
volume:106 ; year:2020 ; number:9-10 ; day:10 ; month:01 ; pages:3943-3956 |
Links: |
---|
DOI / URN: |
10.1007/s00170-019-04876-8 |
---|
Katalog-ID: |
OLC2026151601 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026151601 | ||
003 | DE-627 | ||
005 | 20230323142418.0 | ||
007 | tu | ||
008 | 200820s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00170-019-04876-8 |2 doi | |
035 | |a (DE-627)OLC2026151601 | ||
035 | |a (DE-He213)s00170-019-04876-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Wu, Haorong |e verfasserin |4 aut | |
245 | 1 | 0 | |a A method for tracing key geometric errors of vertical machining center based on global sensitivity analysis |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London Ltd., part of Springer Nature 2020 | ||
520 | |a Abstract This paper proposes a method for tracing key geometric errors of vertical machining centers based on global sensitivity analysis in order to address inconsistent dimensions associated with sensitivity coefficients, random analytical variables, and geometric errors across different positions. The kinematic chain forward solution and the volumetric error model of vertical machining centers based on a global coordinate system is constructed by means of screw theory; the identification model is constructed based on the double bar ball measurement principle. The identification model is transformed into an optimization-design problem, which is solved by a simulated annealing–genetic algorithm. The idea of orthogonal experimental design is used for reference, and 25 test points are selected for the machine tool workspace. By taking the volumetric error model as a sensitivity calculation model, and by taking geometric errors as analytical factors, multi-factor orthogonal experiments and single-factor parametric tests are designed, respectively. The F-values of the significance test results of the orthogonal experiments and the Euclidean norms, ∆P and ∆O, of the parametric test results are used as global sensitivity coefficients. The analysis results suggest that the traceability results of the key geometric errors are essentially the same across the two tests and the 13 key geometric errors of the $ J_{1} $VMC400B vertical machining center are traced. | ||
650 | 4 | |a Global sensitivity analysis | |
650 | 4 | |a Screw theory | |
650 | 4 | |a Traceability of key geometric errors | |
650 | 4 | |a Orthogonal experiment | |
650 | 4 | |a Parametric test | |
700 | 1 | |a Zheng, Hualin |4 aut | |
700 | 1 | |a Wang, Wenkuan |4 aut | |
700 | 1 | |a Xiang, Xiping |4 aut | |
700 | 1 | |a Rong, Maolin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The international journal of advanced manufacturing technology |d Springer London, 1985 |g 106(2020), 9-10 vom: 10. Jan., Seite 3943-3956 |w (DE-627)129185299 |w (DE-600)52651-4 |w (DE-576)014456192 |x 0268-3768 |7 nnns |
773 | 1 | 8 | |g volume:106 |g year:2020 |g number:9-10 |g day:10 |g month:01 |g pages:3943-3956 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00170-019-04876-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2333 | ||
951 | |a AR | ||
952 | |d 106 |j 2020 |e 9-10 |b 10 |c 01 |h 3943-3956 |
author_variant |
h w hw h z hz w w ww x x xx m r mr |
---|---|
matchkey_str |
article:02683768:2020----::mtofrrcnkyemtierrovriamciigetraeog |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s00170-019-04876-8 doi (DE-627)OLC2026151601 (DE-He213)s00170-019-04876-8-p DE-627 ger DE-627 rakwb eng 670 VZ Wu, Haorong verfasserin aut A method for tracing key geometric errors of vertical machining center based on global sensitivity analysis 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2020 Abstract This paper proposes a method for tracing key geometric errors of vertical machining centers based on global sensitivity analysis in order to address inconsistent dimensions associated with sensitivity coefficients, random analytical variables, and geometric errors across different positions. The kinematic chain forward solution and the volumetric error model of vertical machining centers based on a global coordinate system is constructed by means of screw theory; the identification model is constructed based on the double bar ball measurement principle. The identification model is transformed into an optimization-design problem, which is solved by a simulated annealing–genetic algorithm. The idea of orthogonal experimental design is used for reference, and 25 test points are selected for the machine tool workspace. By taking the volumetric error model as a sensitivity calculation model, and by taking geometric errors as analytical factors, multi-factor orthogonal experiments and single-factor parametric tests are designed, respectively. The F-values of the significance test results of the orthogonal experiments and the Euclidean norms, ∆P and ∆O, of the parametric test results are used as global sensitivity coefficients. The analysis results suggest that the traceability results of the key geometric errors are essentially the same across the two tests and the 13 key geometric errors of the $ J_{1} $VMC400B vertical machining center are traced. Global sensitivity analysis Screw theory Traceability of key geometric errors Orthogonal experiment Parametric test Zheng, Hualin aut Wang, Wenkuan aut Xiang, Xiping aut Rong, Maolin aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 106(2020), 9-10 vom: 10. Jan., Seite 3943-3956 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:106 year:2020 number:9-10 day:10 month:01 pages:3943-3956 https://doi.org/10.1007/s00170-019-04876-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 106 2020 9-10 10 01 3943-3956 |
spelling |
10.1007/s00170-019-04876-8 doi (DE-627)OLC2026151601 (DE-He213)s00170-019-04876-8-p DE-627 ger DE-627 rakwb eng 670 VZ Wu, Haorong verfasserin aut A method for tracing key geometric errors of vertical machining center based on global sensitivity analysis 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2020 Abstract This paper proposes a method for tracing key geometric errors of vertical machining centers based on global sensitivity analysis in order to address inconsistent dimensions associated with sensitivity coefficients, random analytical variables, and geometric errors across different positions. The kinematic chain forward solution and the volumetric error model of vertical machining centers based on a global coordinate system is constructed by means of screw theory; the identification model is constructed based on the double bar ball measurement principle. The identification model is transformed into an optimization-design problem, which is solved by a simulated annealing–genetic algorithm. The idea of orthogonal experimental design is used for reference, and 25 test points are selected for the machine tool workspace. By taking the volumetric error model as a sensitivity calculation model, and by taking geometric errors as analytical factors, multi-factor orthogonal experiments and single-factor parametric tests are designed, respectively. The F-values of the significance test results of the orthogonal experiments and the Euclidean norms, ∆P and ∆O, of the parametric test results are used as global sensitivity coefficients. The analysis results suggest that the traceability results of the key geometric errors are essentially the same across the two tests and the 13 key geometric errors of the $ J_{1} $VMC400B vertical machining center are traced. Global sensitivity analysis Screw theory Traceability of key geometric errors Orthogonal experiment Parametric test Zheng, Hualin aut Wang, Wenkuan aut Xiang, Xiping aut Rong, Maolin aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 106(2020), 9-10 vom: 10. Jan., Seite 3943-3956 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:106 year:2020 number:9-10 day:10 month:01 pages:3943-3956 https://doi.org/10.1007/s00170-019-04876-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 106 2020 9-10 10 01 3943-3956 |
allfields_unstemmed |
10.1007/s00170-019-04876-8 doi (DE-627)OLC2026151601 (DE-He213)s00170-019-04876-8-p DE-627 ger DE-627 rakwb eng 670 VZ Wu, Haorong verfasserin aut A method for tracing key geometric errors of vertical machining center based on global sensitivity analysis 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2020 Abstract This paper proposes a method for tracing key geometric errors of vertical machining centers based on global sensitivity analysis in order to address inconsistent dimensions associated with sensitivity coefficients, random analytical variables, and geometric errors across different positions. The kinematic chain forward solution and the volumetric error model of vertical machining centers based on a global coordinate system is constructed by means of screw theory; the identification model is constructed based on the double bar ball measurement principle. The identification model is transformed into an optimization-design problem, which is solved by a simulated annealing–genetic algorithm. The idea of orthogonal experimental design is used for reference, and 25 test points are selected for the machine tool workspace. By taking the volumetric error model as a sensitivity calculation model, and by taking geometric errors as analytical factors, multi-factor orthogonal experiments and single-factor parametric tests are designed, respectively. The F-values of the significance test results of the orthogonal experiments and the Euclidean norms, ∆P and ∆O, of the parametric test results are used as global sensitivity coefficients. The analysis results suggest that the traceability results of the key geometric errors are essentially the same across the two tests and the 13 key geometric errors of the $ J_{1} $VMC400B vertical machining center are traced. Global sensitivity analysis Screw theory Traceability of key geometric errors Orthogonal experiment Parametric test Zheng, Hualin aut Wang, Wenkuan aut Xiang, Xiping aut Rong, Maolin aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 106(2020), 9-10 vom: 10. Jan., Seite 3943-3956 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:106 year:2020 number:9-10 day:10 month:01 pages:3943-3956 https://doi.org/10.1007/s00170-019-04876-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 106 2020 9-10 10 01 3943-3956 |
allfieldsGer |
10.1007/s00170-019-04876-8 doi (DE-627)OLC2026151601 (DE-He213)s00170-019-04876-8-p DE-627 ger DE-627 rakwb eng 670 VZ Wu, Haorong verfasserin aut A method for tracing key geometric errors of vertical machining center based on global sensitivity analysis 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2020 Abstract This paper proposes a method for tracing key geometric errors of vertical machining centers based on global sensitivity analysis in order to address inconsistent dimensions associated with sensitivity coefficients, random analytical variables, and geometric errors across different positions. The kinematic chain forward solution and the volumetric error model of vertical machining centers based on a global coordinate system is constructed by means of screw theory; the identification model is constructed based on the double bar ball measurement principle. The identification model is transformed into an optimization-design problem, which is solved by a simulated annealing–genetic algorithm. The idea of orthogonal experimental design is used for reference, and 25 test points are selected for the machine tool workspace. By taking the volumetric error model as a sensitivity calculation model, and by taking geometric errors as analytical factors, multi-factor orthogonal experiments and single-factor parametric tests are designed, respectively. The F-values of the significance test results of the orthogonal experiments and the Euclidean norms, ∆P and ∆O, of the parametric test results are used as global sensitivity coefficients. The analysis results suggest that the traceability results of the key geometric errors are essentially the same across the two tests and the 13 key geometric errors of the $ J_{1} $VMC400B vertical machining center are traced. Global sensitivity analysis Screw theory Traceability of key geometric errors Orthogonal experiment Parametric test Zheng, Hualin aut Wang, Wenkuan aut Xiang, Xiping aut Rong, Maolin aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 106(2020), 9-10 vom: 10. Jan., Seite 3943-3956 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:106 year:2020 number:9-10 day:10 month:01 pages:3943-3956 https://doi.org/10.1007/s00170-019-04876-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 106 2020 9-10 10 01 3943-3956 |
allfieldsSound |
10.1007/s00170-019-04876-8 doi (DE-627)OLC2026151601 (DE-He213)s00170-019-04876-8-p DE-627 ger DE-627 rakwb eng 670 VZ Wu, Haorong verfasserin aut A method for tracing key geometric errors of vertical machining center based on global sensitivity analysis 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2020 Abstract This paper proposes a method for tracing key geometric errors of vertical machining centers based on global sensitivity analysis in order to address inconsistent dimensions associated with sensitivity coefficients, random analytical variables, and geometric errors across different positions. The kinematic chain forward solution and the volumetric error model of vertical machining centers based on a global coordinate system is constructed by means of screw theory; the identification model is constructed based on the double bar ball measurement principle. The identification model is transformed into an optimization-design problem, which is solved by a simulated annealing–genetic algorithm. The idea of orthogonal experimental design is used for reference, and 25 test points are selected for the machine tool workspace. By taking the volumetric error model as a sensitivity calculation model, and by taking geometric errors as analytical factors, multi-factor orthogonal experiments and single-factor parametric tests are designed, respectively. The F-values of the significance test results of the orthogonal experiments and the Euclidean norms, ∆P and ∆O, of the parametric test results are used as global sensitivity coefficients. The analysis results suggest that the traceability results of the key geometric errors are essentially the same across the two tests and the 13 key geometric errors of the $ J_{1} $VMC400B vertical machining center are traced. Global sensitivity analysis Screw theory Traceability of key geometric errors Orthogonal experiment Parametric test Zheng, Hualin aut Wang, Wenkuan aut Xiang, Xiping aut Rong, Maolin aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 106(2020), 9-10 vom: 10. Jan., Seite 3943-3956 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:106 year:2020 number:9-10 day:10 month:01 pages:3943-3956 https://doi.org/10.1007/s00170-019-04876-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 106 2020 9-10 10 01 3943-3956 |
language |
English |
source |
Enthalten in The international journal of advanced manufacturing technology 106(2020), 9-10 vom: 10. Jan., Seite 3943-3956 volume:106 year:2020 number:9-10 day:10 month:01 pages:3943-3956 |
sourceStr |
Enthalten in The international journal of advanced manufacturing technology 106(2020), 9-10 vom: 10. Jan., Seite 3943-3956 volume:106 year:2020 number:9-10 day:10 month:01 pages:3943-3956 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Global sensitivity analysis Screw theory Traceability of key geometric errors Orthogonal experiment Parametric test |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
The international journal of advanced manufacturing technology |
authorswithroles_txt_mv |
Wu, Haorong @@aut@@ Zheng, Hualin @@aut@@ Wang, Wenkuan @@aut@@ Xiang, Xiping @@aut@@ Rong, Maolin @@aut@@ |
publishDateDaySort_date |
2020-01-10T00:00:00Z |
hierarchy_top_id |
129185299 |
dewey-sort |
3670 |
id |
OLC2026151601 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026151601</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323142418.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-019-04876-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026151601</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-019-04876-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Haorong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A method for tracing key geometric errors of vertical machining center based on global sensitivity analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper proposes a method for tracing key geometric errors of vertical machining centers based on global sensitivity analysis in order to address inconsistent dimensions associated with sensitivity coefficients, random analytical variables, and geometric errors across different positions. The kinematic chain forward solution and the volumetric error model of vertical machining centers based on a global coordinate system is constructed by means of screw theory; the identification model is constructed based on the double bar ball measurement principle. The identification model is transformed into an optimization-design problem, which is solved by a simulated annealing–genetic algorithm. The idea of orthogonal experimental design is used for reference, and 25 test points are selected for the machine tool workspace. By taking the volumetric error model as a sensitivity calculation model, and by taking geometric errors as analytical factors, multi-factor orthogonal experiments and single-factor parametric tests are designed, respectively. The F-values of the significance test results of the orthogonal experiments and the Euclidean norms, ∆P and ∆O, of the parametric test results are used as global sensitivity coefficients. The analysis results suggest that the traceability results of the key geometric errors are essentially the same across the two tests and the 13 key geometric errors of the $ J_{1} $VMC400B vertical machining center are traced.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global sensitivity analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Screw theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traceability of key geometric errors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal experiment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parametric test</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Hualin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Wenkuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiang, Xiping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rong, Maolin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">106(2020), 9-10 vom: 10. Jan., Seite 3943-3956</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:106</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:9-10</subfield><subfield code="g">day:10</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:3943-3956</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-019-04876-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">106</subfield><subfield code="j">2020</subfield><subfield code="e">9-10</subfield><subfield code="b">10</subfield><subfield code="c">01</subfield><subfield code="h">3943-3956</subfield></datafield></record></collection>
|
author |
Wu, Haorong |
spellingShingle |
Wu, Haorong ddc 670 misc Global sensitivity analysis misc Screw theory misc Traceability of key geometric errors misc Orthogonal experiment misc Parametric test A method for tracing key geometric errors of vertical machining center based on global sensitivity analysis |
authorStr |
Wu, Haorong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129185299 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0268-3768 |
topic_title |
670 VZ A method for tracing key geometric errors of vertical machining center based on global sensitivity analysis Global sensitivity analysis Screw theory Traceability of key geometric errors Orthogonal experiment Parametric test |
topic |
ddc 670 misc Global sensitivity analysis misc Screw theory misc Traceability of key geometric errors misc Orthogonal experiment misc Parametric test |
topic_unstemmed |
ddc 670 misc Global sensitivity analysis misc Screw theory misc Traceability of key geometric errors misc Orthogonal experiment misc Parametric test |
topic_browse |
ddc 670 misc Global sensitivity analysis misc Screw theory misc Traceability of key geometric errors misc Orthogonal experiment misc Parametric test |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The international journal of advanced manufacturing technology |
hierarchy_parent_id |
129185299 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
The international journal of advanced manufacturing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 |
title |
A method for tracing key geometric errors of vertical machining center based on global sensitivity analysis |
ctrlnum |
(DE-627)OLC2026151601 (DE-He213)s00170-019-04876-8-p |
title_full |
A method for tracing key geometric errors of vertical machining center based on global sensitivity analysis |
author_sort |
Wu, Haorong |
journal |
The international journal of advanced manufacturing technology |
journalStr |
The international journal of advanced manufacturing technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
3943 |
author_browse |
Wu, Haorong Zheng, Hualin Wang, Wenkuan Xiang, Xiping Rong, Maolin |
container_volume |
106 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Wu, Haorong |
doi_str_mv |
10.1007/s00170-019-04876-8 |
dewey-full |
670 |
title_sort |
a method for tracing key geometric errors of vertical machining center based on global sensitivity analysis |
title_auth |
A method for tracing key geometric errors of vertical machining center based on global sensitivity analysis |
abstract |
Abstract This paper proposes a method for tracing key geometric errors of vertical machining centers based on global sensitivity analysis in order to address inconsistent dimensions associated with sensitivity coefficients, random analytical variables, and geometric errors across different positions. The kinematic chain forward solution and the volumetric error model of vertical machining centers based on a global coordinate system is constructed by means of screw theory; the identification model is constructed based on the double bar ball measurement principle. The identification model is transformed into an optimization-design problem, which is solved by a simulated annealing–genetic algorithm. The idea of orthogonal experimental design is used for reference, and 25 test points are selected for the machine tool workspace. By taking the volumetric error model as a sensitivity calculation model, and by taking geometric errors as analytical factors, multi-factor orthogonal experiments and single-factor parametric tests are designed, respectively. The F-values of the significance test results of the orthogonal experiments and the Euclidean norms, ∆P and ∆O, of the parametric test results are used as global sensitivity coefficients. The analysis results suggest that the traceability results of the key geometric errors are essentially the same across the two tests and the 13 key geometric errors of the $ J_{1} $VMC400B vertical machining center are traced. © Springer-Verlag London Ltd., part of Springer Nature 2020 |
abstractGer |
Abstract This paper proposes a method for tracing key geometric errors of vertical machining centers based on global sensitivity analysis in order to address inconsistent dimensions associated with sensitivity coefficients, random analytical variables, and geometric errors across different positions. The kinematic chain forward solution and the volumetric error model of vertical machining centers based on a global coordinate system is constructed by means of screw theory; the identification model is constructed based on the double bar ball measurement principle. The identification model is transformed into an optimization-design problem, which is solved by a simulated annealing–genetic algorithm. The idea of orthogonal experimental design is used for reference, and 25 test points are selected for the machine tool workspace. By taking the volumetric error model as a sensitivity calculation model, and by taking geometric errors as analytical factors, multi-factor orthogonal experiments and single-factor parametric tests are designed, respectively. The F-values of the significance test results of the orthogonal experiments and the Euclidean norms, ∆P and ∆O, of the parametric test results are used as global sensitivity coefficients. The analysis results suggest that the traceability results of the key geometric errors are essentially the same across the two tests and the 13 key geometric errors of the $ J_{1} $VMC400B vertical machining center are traced. © Springer-Verlag London Ltd., part of Springer Nature 2020 |
abstract_unstemmed |
Abstract This paper proposes a method for tracing key geometric errors of vertical machining centers based on global sensitivity analysis in order to address inconsistent dimensions associated with sensitivity coefficients, random analytical variables, and geometric errors across different positions. The kinematic chain forward solution and the volumetric error model of vertical machining centers based on a global coordinate system is constructed by means of screw theory; the identification model is constructed based on the double bar ball measurement principle. The identification model is transformed into an optimization-design problem, which is solved by a simulated annealing–genetic algorithm. The idea of orthogonal experimental design is used for reference, and 25 test points are selected for the machine tool workspace. By taking the volumetric error model as a sensitivity calculation model, and by taking geometric errors as analytical factors, multi-factor orthogonal experiments and single-factor parametric tests are designed, respectively. The F-values of the significance test results of the orthogonal experiments and the Euclidean norms, ∆P and ∆O, of the parametric test results are used as global sensitivity coefficients. The analysis results suggest that the traceability results of the key geometric errors are essentially the same across the two tests and the 13 key geometric errors of the $ J_{1} $VMC400B vertical machining center are traced. © Springer-Verlag London Ltd., part of Springer Nature 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 |
container_issue |
9-10 |
title_short |
A method for tracing key geometric errors of vertical machining center based on global sensitivity analysis |
url |
https://doi.org/10.1007/s00170-019-04876-8 |
remote_bool |
false |
author2 |
Zheng, Hualin Wang, Wenkuan Xiang, Xiping Rong, Maolin |
author2Str |
Zheng, Hualin Wang, Wenkuan Xiang, Xiping Rong, Maolin |
ppnlink |
129185299 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00170-019-04876-8 |
up_date |
2024-07-04T03:14:35.844Z |
_version_ |
1803616650109386752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026151601</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323142418.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-019-04876-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026151601</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-019-04876-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Haorong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A method for tracing key geometric errors of vertical machining center based on global sensitivity analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper proposes a method for tracing key geometric errors of vertical machining centers based on global sensitivity analysis in order to address inconsistent dimensions associated with sensitivity coefficients, random analytical variables, and geometric errors across different positions. The kinematic chain forward solution and the volumetric error model of vertical machining centers based on a global coordinate system is constructed by means of screw theory; the identification model is constructed based on the double bar ball measurement principle. The identification model is transformed into an optimization-design problem, which is solved by a simulated annealing–genetic algorithm. The idea of orthogonal experimental design is used for reference, and 25 test points are selected for the machine tool workspace. By taking the volumetric error model as a sensitivity calculation model, and by taking geometric errors as analytical factors, multi-factor orthogonal experiments and single-factor parametric tests are designed, respectively. The F-values of the significance test results of the orthogonal experiments and the Euclidean norms, ∆P and ∆O, of the parametric test results are used as global sensitivity coefficients. The analysis results suggest that the traceability results of the key geometric errors are essentially the same across the two tests and the 13 key geometric errors of the $ J_{1} $VMC400B vertical machining center are traced.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global sensitivity analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Screw theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traceability of key geometric errors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orthogonal experiment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parametric test</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Hualin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Wenkuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiang, Xiping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rong, Maolin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">106(2020), 9-10 vom: 10. Jan., Seite 3943-3956</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:106</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:9-10</subfield><subfield code="g">day:10</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:3943-3956</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-019-04876-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">106</subfield><subfield code="j">2020</subfield><subfield code="e">9-10</subfield><subfield code="b">10</subfield><subfield code="c">01</subfield><subfield code="h">3943-3956</subfield></datafield></record></collection>
|
score |
7.39849 |