Numerical studies of residual states and scaling effects in laser-directed energy deposition additive manufacturing
Abstract Sequentially coupled thermo-mechanical model was used to simulate the residual stresses and residual distortions in the directed energy deposition additive manufacturing by laser. The proposed models were validated by comparison with experimental data. Different sizes of components were use...
Ausführliche Beschreibung
Autor*in: |
Zhang, Z. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London Ltd., part of Springer Nature 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: The international journal of advanced manufacturing technology - Springer London, 1985, 108(2020), 4 vom: 19. Apr., Seite 1233-1247 |
---|---|
Übergeordnetes Werk: |
volume:108 ; year:2020 ; number:4 ; day:19 ; month:04 ; pages:1233-1247 |
Links: |
---|
DOI / URN: |
10.1007/s00170-020-05300-2 |
---|
Katalog-ID: |
OLC2026157367 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026157367 | ||
003 | DE-627 | ||
005 | 20230504151900.0 | ||
007 | tu | ||
008 | 200820s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00170-020-05300-2 |2 doi | |
035 | |a (DE-627)OLC2026157367 | ||
035 | |a (DE-He213)s00170-020-05300-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Zhang, Z. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical studies of residual states and scaling effects in laser-directed energy deposition additive manufacturing |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag London Ltd., part of Springer Nature 2020 | ||
520 | |a Abstract Sequentially coupled thermo-mechanical model was used to simulate the residual stresses and residual distortions in the directed energy deposition additive manufacturing by laser. The proposed models were validated by comparison with experimental data. Different sizes of components were used to study the scaling effects. Results indicate that the residual stress can be controlled by the component sizes. This phenomenon can be explained by the bending deformation and the temperature fluctuations, especially the cooling rate, in the directed energy deposition additive manufacturing process. Both the bending deformation and the temperature fluctuations can be controlled by the ambient temperature and the designed process parameters. Analytical model was established to show how the components’ sizes affect the final residual states in combination with different design parameters. | ||
650 | 4 | |a Additive manufacturing | |
650 | 4 | |a Residual stress | |
650 | 4 | |a Residual distortion | |
650 | 4 | |a Scaling effect | |
700 | 1 | |a Ge, P. |4 aut | |
700 | 1 | |a Yao, X. X. |4 aut | |
700 | 1 | |a Li, T. |4 aut | |
700 | 1 | |a Liu, W. W. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The international journal of advanced manufacturing technology |d Springer London, 1985 |g 108(2020), 4 vom: 19. Apr., Seite 1233-1247 |w (DE-627)129185299 |w (DE-600)52651-4 |w (DE-576)014456192 |x 0268-3768 |7 nnns |
773 | 1 | 8 | |g volume:108 |g year:2020 |g number:4 |g day:19 |g month:04 |g pages:1233-1247 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00170-020-05300-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2333 | ||
951 | |a AR | ||
952 | |d 108 |j 2020 |e 4 |b 19 |c 04 |h 1233-1247 |
author_variant |
z z zz p g pg x x y xx xxy t l tl w w l ww wwl |
---|---|
matchkey_str |
article:02683768:2020----::ueiasuisfeiulttsnsaigfetilsrietdnryeo |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s00170-020-05300-2 doi (DE-627)OLC2026157367 (DE-He213)s00170-020-05300-2-p DE-627 ger DE-627 rakwb eng 670 VZ Zhang, Z. verfasserin aut Numerical studies of residual states and scaling effects in laser-directed energy deposition additive manufacturing 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2020 Abstract Sequentially coupled thermo-mechanical model was used to simulate the residual stresses and residual distortions in the directed energy deposition additive manufacturing by laser. The proposed models were validated by comparison with experimental data. Different sizes of components were used to study the scaling effects. Results indicate that the residual stress can be controlled by the component sizes. This phenomenon can be explained by the bending deformation and the temperature fluctuations, especially the cooling rate, in the directed energy deposition additive manufacturing process. Both the bending deformation and the temperature fluctuations can be controlled by the ambient temperature and the designed process parameters. Analytical model was established to show how the components’ sizes affect the final residual states in combination with different design parameters. Additive manufacturing Residual stress Residual distortion Scaling effect Ge, P. aut Yao, X. X. aut Li, T. aut Liu, W. W. aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 108(2020), 4 vom: 19. Apr., Seite 1233-1247 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:108 year:2020 number:4 day:19 month:04 pages:1233-1247 https://doi.org/10.1007/s00170-020-05300-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 108 2020 4 19 04 1233-1247 |
spelling |
10.1007/s00170-020-05300-2 doi (DE-627)OLC2026157367 (DE-He213)s00170-020-05300-2-p DE-627 ger DE-627 rakwb eng 670 VZ Zhang, Z. verfasserin aut Numerical studies of residual states and scaling effects in laser-directed energy deposition additive manufacturing 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2020 Abstract Sequentially coupled thermo-mechanical model was used to simulate the residual stresses and residual distortions in the directed energy deposition additive manufacturing by laser. The proposed models were validated by comparison with experimental data. Different sizes of components were used to study the scaling effects. Results indicate that the residual stress can be controlled by the component sizes. This phenomenon can be explained by the bending deformation and the temperature fluctuations, especially the cooling rate, in the directed energy deposition additive manufacturing process. Both the bending deformation and the temperature fluctuations can be controlled by the ambient temperature and the designed process parameters. Analytical model was established to show how the components’ sizes affect the final residual states in combination with different design parameters. Additive manufacturing Residual stress Residual distortion Scaling effect Ge, P. aut Yao, X. X. aut Li, T. aut Liu, W. W. aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 108(2020), 4 vom: 19. Apr., Seite 1233-1247 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:108 year:2020 number:4 day:19 month:04 pages:1233-1247 https://doi.org/10.1007/s00170-020-05300-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 108 2020 4 19 04 1233-1247 |
allfields_unstemmed |
10.1007/s00170-020-05300-2 doi (DE-627)OLC2026157367 (DE-He213)s00170-020-05300-2-p DE-627 ger DE-627 rakwb eng 670 VZ Zhang, Z. verfasserin aut Numerical studies of residual states and scaling effects in laser-directed energy deposition additive manufacturing 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2020 Abstract Sequentially coupled thermo-mechanical model was used to simulate the residual stresses and residual distortions in the directed energy deposition additive manufacturing by laser. The proposed models were validated by comparison with experimental data. Different sizes of components were used to study the scaling effects. Results indicate that the residual stress can be controlled by the component sizes. This phenomenon can be explained by the bending deformation and the temperature fluctuations, especially the cooling rate, in the directed energy deposition additive manufacturing process. Both the bending deformation and the temperature fluctuations can be controlled by the ambient temperature and the designed process parameters. Analytical model was established to show how the components’ sizes affect the final residual states in combination with different design parameters. Additive manufacturing Residual stress Residual distortion Scaling effect Ge, P. aut Yao, X. X. aut Li, T. aut Liu, W. W. aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 108(2020), 4 vom: 19. Apr., Seite 1233-1247 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:108 year:2020 number:4 day:19 month:04 pages:1233-1247 https://doi.org/10.1007/s00170-020-05300-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 108 2020 4 19 04 1233-1247 |
allfieldsGer |
10.1007/s00170-020-05300-2 doi (DE-627)OLC2026157367 (DE-He213)s00170-020-05300-2-p DE-627 ger DE-627 rakwb eng 670 VZ Zhang, Z. verfasserin aut Numerical studies of residual states and scaling effects in laser-directed energy deposition additive manufacturing 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2020 Abstract Sequentially coupled thermo-mechanical model was used to simulate the residual stresses and residual distortions in the directed energy deposition additive manufacturing by laser. The proposed models were validated by comparison with experimental data. Different sizes of components were used to study the scaling effects. Results indicate that the residual stress can be controlled by the component sizes. This phenomenon can be explained by the bending deformation and the temperature fluctuations, especially the cooling rate, in the directed energy deposition additive manufacturing process. Both the bending deformation and the temperature fluctuations can be controlled by the ambient temperature and the designed process parameters. Analytical model was established to show how the components’ sizes affect the final residual states in combination with different design parameters. Additive manufacturing Residual stress Residual distortion Scaling effect Ge, P. aut Yao, X. X. aut Li, T. aut Liu, W. W. aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 108(2020), 4 vom: 19. Apr., Seite 1233-1247 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:108 year:2020 number:4 day:19 month:04 pages:1233-1247 https://doi.org/10.1007/s00170-020-05300-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 108 2020 4 19 04 1233-1247 |
allfieldsSound |
10.1007/s00170-020-05300-2 doi (DE-627)OLC2026157367 (DE-He213)s00170-020-05300-2-p DE-627 ger DE-627 rakwb eng 670 VZ Zhang, Z. verfasserin aut Numerical studies of residual states and scaling effects in laser-directed energy deposition additive manufacturing 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag London Ltd., part of Springer Nature 2020 Abstract Sequentially coupled thermo-mechanical model was used to simulate the residual stresses and residual distortions in the directed energy deposition additive manufacturing by laser. The proposed models were validated by comparison with experimental data. Different sizes of components were used to study the scaling effects. Results indicate that the residual stress can be controlled by the component sizes. This phenomenon can be explained by the bending deformation and the temperature fluctuations, especially the cooling rate, in the directed energy deposition additive manufacturing process. Both the bending deformation and the temperature fluctuations can be controlled by the ambient temperature and the designed process parameters. Analytical model was established to show how the components’ sizes affect the final residual states in combination with different design parameters. Additive manufacturing Residual stress Residual distortion Scaling effect Ge, P. aut Yao, X. X. aut Li, T. aut Liu, W. W. aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 108(2020), 4 vom: 19. Apr., Seite 1233-1247 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:108 year:2020 number:4 day:19 month:04 pages:1233-1247 https://doi.org/10.1007/s00170-020-05300-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 108 2020 4 19 04 1233-1247 |
language |
English |
source |
Enthalten in The international journal of advanced manufacturing technology 108(2020), 4 vom: 19. Apr., Seite 1233-1247 volume:108 year:2020 number:4 day:19 month:04 pages:1233-1247 |
sourceStr |
Enthalten in The international journal of advanced manufacturing technology 108(2020), 4 vom: 19. Apr., Seite 1233-1247 volume:108 year:2020 number:4 day:19 month:04 pages:1233-1247 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Additive manufacturing Residual stress Residual distortion Scaling effect |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
The international journal of advanced manufacturing technology |
authorswithroles_txt_mv |
Zhang, Z. @@aut@@ Ge, P. @@aut@@ Yao, X. X. @@aut@@ Li, T. @@aut@@ Liu, W. W. @@aut@@ |
publishDateDaySort_date |
2020-04-19T00:00:00Z |
hierarchy_top_id |
129185299 |
dewey-sort |
3670 |
id |
OLC2026157367 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026157367</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504151900.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-020-05300-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026157367</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-020-05300-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Z.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical studies of residual states and scaling effects in laser-directed energy deposition additive manufacturing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Sequentially coupled thermo-mechanical model was used to simulate the residual stresses and residual distortions in the directed energy deposition additive manufacturing by laser. The proposed models were validated by comparison with experimental data. Different sizes of components were used to study the scaling effects. Results indicate that the residual stress can be controlled by the component sizes. This phenomenon can be explained by the bending deformation and the temperature fluctuations, especially the cooling rate, in the directed energy deposition additive manufacturing process. Both the bending deformation and the temperature fluctuations can be controlled by the ambient temperature and the designed process parameters. Analytical model was established to show how the components’ sizes affect the final residual states in combination with different design parameters.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Additive manufacturing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residual stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residual distortion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scaling effect</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ge, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, X. X.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, W. W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">108(2020), 4 vom: 19. Apr., Seite 1233-1247</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:108</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4</subfield><subfield code="g">day:19</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:1233-1247</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-020-05300-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">108</subfield><subfield code="j">2020</subfield><subfield code="e">4</subfield><subfield code="b">19</subfield><subfield code="c">04</subfield><subfield code="h">1233-1247</subfield></datafield></record></collection>
|
author |
Zhang, Z. |
spellingShingle |
Zhang, Z. ddc 670 misc Additive manufacturing misc Residual stress misc Residual distortion misc Scaling effect Numerical studies of residual states and scaling effects in laser-directed energy deposition additive manufacturing |
authorStr |
Zhang, Z. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129185299 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0268-3768 |
topic_title |
670 VZ Numerical studies of residual states and scaling effects in laser-directed energy deposition additive manufacturing Additive manufacturing Residual stress Residual distortion Scaling effect |
topic |
ddc 670 misc Additive manufacturing misc Residual stress misc Residual distortion misc Scaling effect |
topic_unstemmed |
ddc 670 misc Additive manufacturing misc Residual stress misc Residual distortion misc Scaling effect |
topic_browse |
ddc 670 misc Additive manufacturing misc Residual stress misc Residual distortion misc Scaling effect |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The international journal of advanced manufacturing technology |
hierarchy_parent_id |
129185299 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
The international journal of advanced manufacturing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 |
title |
Numerical studies of residual states and scaling effects in laser-directed energy deposition additive manufacturing |
ctrlnum |
(DE-627)OLC2026157367 (DE-He213)s00170-020-05300-2-p |
title_full |
Numerical studies of residual states and scaling effects in laser-directed energy deposition additive manufacturing |
author_sort |
Zhang, Z. |
journal |
The international journal of advanced manufacturing technology |
journalStr |
The international journal of advanced manufacturing technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
1233 |
author_browse |
Zhang, Z. Ge, P. Yao, X. X. Li, T. Liu, W. W. |
container_volume |
108 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Zhang, Z. |
doi_str_mv |
10.1007/s00170-020-05300-2 |
dewey-full |
670 |
title_sort |
numerical studies of residual states and scaling effects in laser-directed energy deposition additive manufacturing |
title_auth |
Numerical studies of residual states and scaling effects in laser-directed energy deposition additive manufacturing |
abstract |
Abstract Sequentially coupled thermo-mechanical model was used to simulate the residual stresses and residual distortions in the directed energy deposition additive manufacturing by laser. The proposed models were validated by comparison with experimental data. Different sizes of components were used to study the scaling effects. Results indicate that the residual stress can be controlled by the component sizes. This phenomenon can be explained by the bending deformation and the temperature fluctuations, especially the cooling rate, in the directed energy deposition additive manufacturing process. Both the bending deformation and the temperature fluctuations can be controlled by the ambient temperature and the designed process parameters. Analytical model was established to show how the components’ sizes affect the final residual states in combination with different design parameters. © Springer-Verlag London Ltd., part of Springer Nature 2020 |
abstractGer |
Abstract Sequentially coupled thermo-mechanical model was used to simulate the residual stresses and residual distortions in the directed energy deposition additive manufacturing by laser. The proposed models were validated by comparison with experimental data. Different sizes of components were used to study the scaling effects. Results indicate that the residual stress can be controlled by the component sizes. This phenomenon can be explained by the bending deformation and the temperature fluctuations, especially the cooling rate, in the directed energy deposition additive manufacturing process. Both the bending deformation and the temperature fluctuations can be controlled by the ambient temperature and the designed process parameters. Analytical model was established to show how the components’ sizes affect the final residual states in combination with different design parameters. © Springer-Verlag London Ltd., part of Springer Nature 2020 |
abstract_unstemmed |
Abstract Sequentially coupled thermo-mechanical model was used to simulate the residual stresses and residual distortions in the directed energy deposition additive manufacturing by laser. The proposed models were validated by comparison with experimental data. Different sizes of components were used to study the scaling effects. Results indicate that the residual stress can be controlled by the component sizes. This phenomenon can be explained by the bending deformation and the temperature fluctuations, especially the cooling rate, in the directed energy deposition additive manufacturing process. Both the bending deformation and the temperature fluctuations can be controlled by the ambient temperature and the designed process parameters. Analytical model was established to show how the components’ sizes affect the final residual states in combination with different design parameters. © Springer-Verlag London Ltd., part of Springer Nature 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 |
container_issue |
4 |
title_short |
Numerical studies of residual states and scaling effects in laser-directed energy deposition additive manufacturing |
url |
https://doi.org/10.1007/s00170-020-05300-2 |
remote_bool |
false |
author2 |
Ge, P. Yao, X. X. Li, T. Liu, W. W. |
author2Str |
Ge, P. Yao, X. X. Li, T. Liu, W. W. |
ppnlink |
129185299 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00170-020-05300-2 |
up_date |
2024-07-04T03:15:31.835Z |
_version_ |
1803616708823351296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026157367</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504151900.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-020-05300-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026157367</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-020-05300-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Z.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical studies of residual states and scaling effects in laser-directed energy deposition additive manufacturing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London Ltd., part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Sequentially coupled thermo-mechanical model was used to simulate the residual stresses and residual distortions in the directed energy deposition additive manufacturing by laser. The proposed models were validated by comparison with experimental data. Different sizes of components were used to study the scaling effects. Results indicate that the residual stress can be controlled by the component sizes. This phenomenon can be explained by the bending deformation and the temperature fluctuations, especially the cooling rate, in the directed energy deposition additive manufacturing process. Both the bending deformation and the temperature fluctuations can be controlled by the ambient temperature and the designed process parameters. Analytical model was established to show how the components’ sizes affect the final residual states in combination with different design parameters.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Additive manufacturing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residual stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Residual distortion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scaling effect</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ge, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, X. X.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, W. W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">108(2020), 4 vom: 19. Apr., Seite 1233-1247</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:108</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:4</subfield><subfield code="g">day:19</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:1233-1247</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-020-05300-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">108</subfield><subfield code="j">2020</subfield><subfield code="e">4</subfield><subfield code="b">19</subfield><subfield code="c">04</subfield><subfield code="h">1233-1247</subfield></datafield></record></collection>
|
score |
7.4017725 |