Optical characterisation of silicon nitride thin films grown by novel remote plasma sputter deposition
Abstract Silicon nitride ($ SiN_{x} $) thin films have been deposited by a new remote plasma deposition system HiTUS (High Target Utilisation Sputtering). The remote plasma geometry allows, pseudo separation of plasma/target-bias parameters, lower ion bombardment, and effectively eliminates poisonin...
Ausführliche Beschreibung
Autor*in: |
Claudio, Gianfranco [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science / Materials in electronics - Springer US, 1990, 19(2007), Suppl 1 vom: 11. Dez., Seite 285-288 |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:2007 ; number:Suppl 1 ; day:11 ; month:12 ; pages:285-288 |
Links: |
---|
DOI / URN: |
10.1007/s10854-007-9513-0 |
---|
Katalog-ID: |
OLC2026252351 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026252351 | ||
003 | DE-627 | ||
005 | 20230518115732.0 | ||
007 | tu | ||
008 | 200820s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10854-007-9513-0 |2 doi | |
035 | |a (DE-627)OLC2026252351 | ||
035 | |a (DE-He213)s10854-007-9513-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |a 670 |a 620 |q VZ |
100 | 1 | |a Claudio, Gianfranco |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optical characterisation of silicon nitride thin films grown by novel remote plasma sputter deposition |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2007 | ||
520 | |a Abstract Silicon nitride ($ SiN_{x} $) thin films have been deposited by a new remote plasma deposition system HiTUS (High Target Utilisation Sputtering). The remote plasma geometry allows, pseudo separation of plasma/target-bias parameters, lower ion bombardment, and effectively eliminates poisoning, making it an attractive option for stable reactive sputtering of important electronic and photovoltaic films including silicon nitride. Transmission and absorbance measurements on glass were performed in order to evaluate the absorbance of the silicon nitride thin layer. The $ SiN_{x} $ is produced by reactive sputtering from a silicon target in an Ar/$ N_{2} $ atmosphere, negating the use of silane gas in difference to the more commonly used PECVD method. A deposition rates up to 0.7 nm/s have been obtained. Control of refractive index from 1.9 to 2.3 was achieved by varying the RF target bias, meeting the requirements for silicon passivation in PV applications, with a growth rate independent of refractive index across a wide range. The carrier life time over a range of specified minority carrier densities was measured using a contactless inductively coupled photoconductance tester for 50 ohm cm 〈100〉 oriented silicon wafers coated with different types of $ SiN_{x} $. We found that the passivation action of the silicon nitride increased the carrier lifetime over one order of magnitude. | ||
650 | 4 | |a Silicon Nitride | |
650 | 4 | |a Plasma Enhance Chemical Vapour Deposition | |
650 | 4 | |a Integrate Circuit | |
650 | 4 | |a Silicon Nitride Film | |
650 | 4 | |a Remote Plasma | |
700 | 1 | |a Calnan, Sonya |4 aut | |
700 | 1 | |a Bass, Kevin |4 aut | |
700 | 1 | |a Boreland, Matt |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science / Materials in electronics |d Springer US, 1990 |g 19(2007), Suppl 1 vom: 11. Dez., Seite 285-288 |w (DE-627)130863289 |w (DE-600)1030929-9 |w (DE-576)023106719 |x 0957-4522 |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:2007 |g number:Suppl 1 |g day:11 |g month:12 |g pages:285-288 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10854-007-9513-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 19 |j 2007 |e Suppl 1 |b 11 |c 12 |h 285-288 |
author_variant |
g c gc s c sc k b kb m b mb |
---|---|
matchkey_str |
article:09574522:2007----::piacaatrstooslcnirdtiflsrwbnvleoe |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s10854-007-9513-0 doi (DE-627)OLC2026252351 (DE-He213)s10854-007-9513-0-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Claudio, Gianfranco verfasserin aut Optical characterisation of silicon nitride thin films grown by novel remote plasma sputter deposition 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract Silicon nitride ($ SiN_{x} $) thin films have been deposited by a new remote plasma deposition system HiTUS (High Target Utilisation Sputtering). The remote plasma geometry allows, pseudo separation of plasma/target-bias parameters, lower ion bombardment, and effectively eliminates poisoning, making it an attractive option for stable reactive sputtering of important electronic and photovoltaic films including silicon nitride. Transmission and absorbance measurements on glass were performed in order to evaluate the absorbance of the silicon nitride thin layer. The $ SiN_{x} $ is produced by reactive sputtering from a silicon target in an Ar/$ N_{2} $ atmosphere, negating the use of silane gas in difference to the more commonly used PECVD method. A deposition rates up to 0.7 nm/s have been obtained. Control of refractive index from 1.9 to 2.3 was achieved by varying the RF target bias, meeting the requirements for silicon passivation in PV applications, with a growth rate independent of refractive index across a wide range. The carrier life time over a range of specified minority carrier densities was measured using a contactless inductively coupled photoconductance tester for 50 ohm cm 〈100〉 oriented silicon wafers coated with different types of $ SiN_{x} $. We found that the passivation action of the silicon nitride increased the carrier lifetime over one order of magnitude. Silicon Nitride Plasma Enhance Chemical Vapour Deposition Integrate Circuit Silicon Nitride Film Remote Plasma Calnan, Sonya aut Bass, Kevin aut Boreland, Matt aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 19(2007), Suppl 1 vom: 11. Dez., Seite 285-288 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:19 year:2007 number:Suppl 1 day:11 month:12 pages:285-288 https://doi.org/10.1007/s10854-007-9513-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 19 2007 Suppl 1 11 12 285-288 |
spelling |
10.1007/s10854-007-9513-0 doi (DE-627)OLC2026252351 (DE-He213)s10854-007-9513-0-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Claudio, Gianfranco verfasserin aut Optical characterisation of silicon nitride thin films grown by novel remote plasma sputter deposition 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract Silicon nitride ($ SiN_{x} $) thin films have been deposited by a new remote plasma deposition system HiTUS (High Target Utilisation Sputtering). The remote plasma geometry allows, pseudo separation of plasma/target-bias parameters, lower ion bombardment, and effectively eliminates poisoning, making it an attractive option for stable reactive sputtering of important electronic and photovoltaic films including silicon nitride. Transmission and absorbance measurements on glass were performed in order to evaluate the absorbance of the silicon nitride thin layer. The $ SiN_{x} $ is produced by reactive sputtering from a silicon target in an Ar/$ N_{2} $ atmosphere, negating the use of silane gas in difference to the more commonly used PECVD method. A deposition rates up to 0.7 nm/s have been obtained. Control of refractive index from 1.9 to 2.3 was achieved by varying the RF target bias, meeting the requirements for silicon passivation in PV applications, with a growth rate independent of refractive index across a wide range. The carrier life time over a range of specified minority carrier densities was measured using a contactless inductively coupled photoconductance tester for 50 ohm cm 〈100〉 oriented silicon wafers coated with different types of $ SiN_{x} $. We found that the passivation action of the silicon nitride increased the carrier lifetime over one order of magnitude. Silicon Nitride Plasma Enhance Chemical Vapour Deposition Integrate Circuit Silicon Nitride Film Remote Plasma Calnan, Sonya aut Bass, Kevin aut Boreland, Matt aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 19(2007), Suppl 1 vom: 11. Dez., Seite 285-288 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:19 year:2007 number:Suppl 1 day:11 month:12 pages:285-288 https://doi.org/10.1007/s10854-007-9513-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 19 2007 Suppl 1 11 12 285-288 |
allfields_unstemmed |
10.1007/s10854-007-9513-0 doi (DE-627)OLC2026252351 (DE-He213)s10854-007-9513-0-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Claudio, Gianfranco verfasserin aut Optical characterisation of silicon nitride thin films grown by novel remote plasma sputter deposition 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract Silicon nitride ($ SiN_{x} $) thin films have been deposited by a new remote plasma deposition system HiTUS (High Target Utilisation Sputtering). The remote plasma geometry allows, pseudo separation of plasma/target-bias parameters, lower ion bombardment, and effectively eliminates poisoning, making it an attractive option for stable reactive sputtering of important electronic and photovoltaic films including silicon nitride. Transmission and absorbance measurements on glass were performed in order to evaluate the absorbance of the silicon nitride thin layer. The $ SiN_{x} $ is produced by reactive sputtering from a silicon target in an Ar/$ N_{2} $ atmosphere, negating the use of silane gas in difference to the more commonly used PECVD method. A deposition rates up to 0.7 nm/s have been obtained. Control of refractive index from 1.9 to 2.3 was achieved by varying the RF target bias, meeting the requirements for silicon passivation in PV applications, with a growth rate independent of refractive index across a wide range. The carrier life time over a range of specified minority carrier densities was measured using a contactless inductively coupled photoconductance tester for 50 ohm cm 〈100〉 oriented silicon wafers coated with different types of $ SiN_{x} $. We found that the passivation action of the silicon nitride increased the carrier lifetime over one order of magnitude. Silicon Nitride Plasma Enhance Chemical Vapour Deposition Integrate Circuit Silicon Nitride Film Remote Plasma Calnan, Sonya aut Bass, Kevin aut Boreland, Matt aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 19(2007), Suppl 1 vom: 11. Dez., Seite 285-288 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:19 year:2007 number:Suppl 1 day:11 month:12 pages:285-288 https://doi.org/10.1007/s10854-007-9513-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 19 2007 Suppl 1 11 12 285-288 |
allfieldsGer |
10.1007/s10854-007-9513-0 doi (DE-627)OLC2026252351 (DE-He213)s10854-007-9513-0-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Claudio, Gianfranco verfasserin aut Optical characterisation of silicon nitride thin films grown by novel remote plasma sputter deposition 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract Silicon nitride ($ SiN_{x} $) thin films have been deposited by a new remote plasma deposition system HiTUS (High Target Utilisation Sputtering). The remote plasma geometry allows, pseudo separation of plasma/target-bias parameters, lower ion bombardment, and effectively eliminates poisoning, making it an attractive option for stable reactive sputtering of important electronic and photovoltaic films including silicon nitride. Transmission and absorbance measurements on glass were performed in order to evaluate the absorbance of the silicon nitride thin layer. The $ SiN_{x} $ is produced by reactive sputtering from a silicon target in an Ar/$ N_{2} $ atmosphere, negating the use of silane gas in difference to the more commonly used PECVD method. A deposition rates up to 0.7 nm/s have been obtained. Control of refractive index from 1.9 to 2.3 was achieved by varying the RF target bias, meeting the requirements for silicon passivation in PV applications, with a growth rate independent of refractive index across a wide range. The carrier life time over a range of specified minority carrier densities was measured using a contactless inductively coupled photoconductance tester for 50 ohm cm 〈100〉 oriented silicon wafers coated with different types of $ SiN_{x} $. We found that the passivation action of the silicon nitride increased the carrier lifetime over one order of magnitude. Silicon Nitride Plasma Enhance Chemical Vapour Deposition Integrate Circuit Silicon Nitride Film Remote Plasma Calnan, Sonya aut Bass, Kevin aut Boreland, Matt aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 19(2007), Suppl 1 vom: 11. Dez., Seite 285-288 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:19 year:2007 number:Suppl 1 day:11 month:12 pages:285-288 https://doi.org/10.1007/s10854-007-9513-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 19 2007 Suppl 1 11 12 285-288 |
allfieldsSound |
10.1007/s10854-007-9513-0 doi (DE-627)OLC2026252351 (DE-He213)s10854-007-9513-0-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Claudio, Gianfranco verfasserin aut Optical characterisation of silicon nitride thin films grown by novel remote plasma sputter deposition 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract Silicon nitride ($ SiN_{x} $) thin films have been deposited by a new remote plasma deposition system HiTUS (High Target Utilisation Sputtering). The remote plasma geometry allows, pseudo separation of plasma/target-bias parameters, lower ion bombardment, and effectively eliminates poisoning, making it an attractive option for stable reactive sputtering of important electronic and photovoltaic films including silicon nitride. Transmission and absorbance measurements on glass were performed in order to evaluate the absorbance of the silicon nitride thin layer. The $ SiN_{x} $ is produced by reactive sputtering from a silicon target in an Ar/$ N_{2} $ atmosphere, negating the use of silane gas in difference to the more commonly used PECVD method. A deposition rates up to 0.7 nm/s have been obtained. Control of refractive index from 1.9 to 2.3 was achieved by varying the RF target bias, meeting the requirements for silicon passivation in PV applications, with a growth rate independent of refractive index across a wide range. The carrier life time over a range of specified minority carrier densities was measured using a contactless inductively coupled photoconductance tester for 50 ohm cm 〈100〉 oriented silicon wafers coated with different types of $ SiN_{x} $. We found that the passivation action of the silicon nitride increased the carrier lifetime over one order of magnitude. Silicon Nitride Plasma Enhance Chemical Vapour Deposition Integrate Circuit Silicon Nitride Film Remote Plasma Calnan, Sonya aut Bass, Kevin aut Boreland, Matt aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 19(2007), Suppl 1 vom: 11. Dez., Seite 285-288 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:19 year:2007 number:Suppl 1 day:11 month:12 pages:285-288 https://doi.org/10.1007/s10854-007-9513-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 19 2007 Suppl 1 11 12 285-288 |
language |
English |
source |
Enthalten in Journal of materials science / Materials in electronics 19(2007), Suppl 1 vom: 11. Dez., Seite 285-288 volume:19 year:2007 number:Suppl 1 day:11 month:12 pages:285-288 |
sourceStr |
Enthalten in Journal of materials science / Materials in electronics 19(2007), Suppl 1 vom: 11. Dez., Seite 285-288 volume:19 year:2007 number:Suppl 1 day:11 month:12 pages:285-288 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Silicon Nitride Plasma Enhance Chemical Vapour Deposition Integrate Circuit Silicon Nitride Film Remote Plasma |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science / Materials in electronics |
authorswithroles_txt_mv |
Claudio, Gianfranco @@aut@@ Calnan, Sonya @@aut@@ Bass, Kevin @@aut@@ Boreland, Matt @@aut@@ |
publishDateDaySort_date |
2007-12-11T00:00:00Z |
hierarchy_top_id |
130863289 |
dewey-sort |
3600 |
id |
OLC2026252351 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026252351</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230518115732.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10854-007-9513-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026252351</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10854-007-9513-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Claudio, Gianfranco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optical characterisation of silicon nitride thin films grown by novel remote plasma sputter deposition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Silicon nitride ($ SiN_{x} $) thin films have been deposited by a new remote plasma deposition system HiTUS (High Target Utilisation Sputtering). The remote plasma geometry allows, pseudo separation of plasma/target-bias parameters, lower ion bombardment, and effectively eliminates poisoning, making it an attractive option for stable reactive sputtering of important electronic and photovoltaic films including silicon nitride. Transmission and absorbance measurements on glass were performed in order to evaluate the absorbance of the silicon nitride thin layer. The $ SiN_{x} $ is produced by reactive sputtering from a silicon target in an Ar/$ N_{2} $ atmosphere, negating the use of silane gas in difference to the more commonly used PECVD method. A deposition rates up to 0.7 nm/s have been obtained. Control of refractive index from 1.9 to 2.3 was achieved by varying the RF target bias, meeting the requirements for silicon passivation in PV applications, with a growth rate independent of refractive index across a wide range. The carrier life time over a range of specified minority carrier densities was measured using a contactless inductively coupled photoconductance tester for 50 ohm cm 〈100〉 oriented silicon wafers coated with different types of $ SiN_{x} $. We found that the passivation action of the silicon nitride increased the carrier lifetime over one order of magnitude.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon Nitride</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma Enhance Chemical Vapour Deposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrate Circuit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon Nitride Film</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote Plasma</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Calnan, Sonya</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bass, Kevin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boreland, Matt</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science / Materials in electronics</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">19(2007), Suppl 1 vom: 11. Dez., Seite 285-288</subfield><subfield code="w">(DE-627)130863289</subfield><subfield code="w">(DE-600)1030929-9</subfield><subfield code="w">(DE-576)023106719</subfield><subfield code="x">0957-4522</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:Suppl 1</subfield><subfield code="g">day:11</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:285-288</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10854-007-9513-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2007</subfield><subfield code="e">Suppl 1</subfield><subfield code="b">11</subfield><subfield code="c">12</subfield><subfield code="h">285-288</subfield></datafield></record></collection>
|
author |
Claudio, Gianfranco |
spellingShingle |
Claudio, Gianfranco ddc 600 misc Silicon Nitride misc Plasma Enhance Chemical Vapour Deposition misc Integrate Circuit misc Silicon Nitride Film misc Remote Plasma Optical characterisation of silicon nitride thin films grown by novel remote plasma sputter deposition |
authorStr |
Claudio, Gianfranco |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130863289 |
format |
Article |
dewey-ones |
600 - Technology 670 - Manufacturing 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0957-4522 |
topic_title |
600 670 620 VZ Optical characterisation of silicon nitride thin films grown by novel remote plasma sputter deposition Silicon Nitride Plasma Enhance Chemical Vapour Deposition Integrate Circuit Silicon Nitride Film Remote Plasma |
topic |
ddc 600 misc Silicon Nitride misc Plasma Enhance Chemical Vapour Deposition misc Integrate Circuit misc Silicon Nitride Film misc Remote Plasma |
topic_unstemmed |
ddc 600 misc Silicon Nitride misc Plasma Enhance Chemical Vapour Deposition misc Integrate Circuit misc Silicon Nitride Film misc Remote Plasma |
topic_browse |
ddc 600 misc Silicon Nitride misc Plasma Enhance Chemical Vapour Deposition misc Integrate Circuit misc Silicon Nitride Film misc Remote Plasma |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science / Materials in electronics |
hierarchy_parent_id |
130863289 |
dewey-tens |
600 - Technology 670 - Manufacturing 620 - Engineering |
hierarchy_top_title |
Journal of materials science / Materials in electronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 |
title |
Optical characterisation of silicon nitride thin films grown by novel remote plasma sputter deposition |
ctrlnum |
(DE-627)OLC2026252351 (DE-He213)s10854-007-9513-0-p |
title_full |
Optical characterisation of silicon nitride thin films grown by novel remote plasma sputter deposition |
author_sort |
Claudio, Gianfranco |
journal |
Journal of materials science / Materials in electronics |
journalStr |
Journal of materials science / Materials in electronics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
285 |
author_browse |
Claudio, Gianfranco Calnan, Sonya Bass, Kevin Boreland, Matt |
container_volume |
19 |
class |
600 670 620 VZ |
format_se |
Aufsätze |
author-letter |
Claudio, Gianfranco |
doi_str_mv |
10.1007/s10854-007-9513-0 |
dewey-full |
600 670 620 |
title_sort |
optical characterisation of silicon nitride thin films grown by novel remote plasma sputter deposition |
title_auth |
Optical characterisation of silicon nitride thin films grown by novel remote plasma sputter deposition |
abstract |
Abstract Silicon nitride ($ SiN_{x} $) thin films have been deposited by a new remote plasma deposition system HiTUS (High Target Utilisation Sputtering). The remote plasma geometry allows, pseudo separation of plasma/target-bias parameters, lower ion bombardment, and effectively eliminates poisoning, making it an attractive option for stable reactive sputtering of important electronic and photovoltaic films including silicon nitride. Transmission and absorbance measurements on glass were performed in order to evaluate the absorbance of the silicon nitride thin layer. The $ SiN_{x} $ is produced by reactive sputtering from a silicon target in an Ar/$ N_{2} $ atmosphere, negating the use of silane gas in difference to the more commonly used PECVD method. A deposition rates up to 0.7 nm/s have been obtained. Control of refractive index from 1.9 to 2.3 was achieved by varying the RF target bias, meeting the requirements for silicon passivation in PV applications, with a growth rate independent of refractive index across a wide range. The carrier life time over a range of specified minority carrier densities was measured using a contactless inductively coupled photoconductance tester for 50 ohm cm 〈100〉 oriented silicon wafers coated with different types of $ SiN_{x} $. We found that the passivation action of the silicon nitride increased the carrier lifetime over one order of magnitude. © Springer Science+Business Media, LLC 2007 |
abstractGer |
Abstract Silicon nitride ($ SiN_{x} $) thin films have been deposited by a new remote plasma deposition system HiTUS (High Target Utilisation Sputtering). The remote plasma geometry allows, pseudo separation of plasma/target-bias parameters, lower ion bombardment, and effectively eliminates poisoning, making it an attractive option for stable reactive sputtering of important electronic and photovoltaic films including silicon nitride. Transmission and absorbance measurements on glass were performed in order to evaluate the absorbance of the silicon nitride thin layer. The $ SiN_{x} $ is produced by reactive sputtering from a silicon target in an Ar/$ N_{2} $ atmosphere, negating the use of silane gas in difference to the more commonly used PECVD method. A deposition rates up to 0.7 nm/s have been obtained. Control of refractive index from 1.9 to 2.3 was achieved by varying the RF target bias, meeting the requirements for silicon passivation in PV applications, with a growth rate independent of refractive index across a wide range. The carrier life time over a range of specified minority carrier densities was measured using a contactless inductively coupled photoconductance tester for 50 ohm cm 〈100〉 oriented silicon wafers coated with different types of $ SiN_{x} $. We found that the passivation action of the silicon nitride increased the carrier lifetime over one order of magnitude. © Springer Science+Business Media, LLC 2007 |
abstract_unstemmed |
Abstract Silicon nitride ($ SiN_{x} $) thin films have been deposited by a new remote plasma deposition system HiTUS (High Target Utilisation Sputtering). The remote plasma geometry allows, pseudo separation of plasma/target-bias parameters, lower ion bombardment, and effectively eliminates poisoning, making it an attractive option for stable reactive sputtering of important electronic and photovoltaic films including silicon nitride. Transmission and absorbance measurements on glass were performed in order to evaluate the absorbance of the silicon nitride thin layer. The $ SiN_{x} $ is produced by reactive sputtering from a silicon target in an Ar/$ N_{2} $ atmosphere, negating the use of silane gas in difference to the more commonly used PECVD method. A deposition rates up to 0.7 nm/s have been obtained. Control of refractive index from 1.9 to 2.3 was achieved by varying the RF target bias, meeting the requirements for silicon passivation in PV applications, with a growth rate independent of refractive index across a wide range. The carrier life time over a range of specified minority carrier densities was measured using a contactless inductively coupled photoconductance tester for 50 ohm cm 〈100〉 oriented silicon wafers coated with different types of $ SiN_{x} $. We found that the passivation action of the silicon nitride increased the carrier lifetime over one order of magnitude. © Springer Science+Business Media, LLC 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 |
container_issue |
Suppl 1 |
title_short |
Optical characterisation of silicon nitride thin films grown by novel remote plasma sputter deposition |
url |
https://doi.org/10.1007/s10854-007-9513-0 |
remote_bool |
false |
author2 |
Calnan, Sonya Bass, Kevin Boreland, Matt |
author2Str |
Calnan, Sonya Bass, Kevin Boreland, Matt |
ppnlink |
130863289 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10854-007-9513-0 |
up_date |
2024-07-04T03:29:40.158Z |
_version_ |
1803617598344003584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026252351</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230518115732.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10854-007-9513-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026252351</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10854-007-9513-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Claudio, Gianfranco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optical characterisation of silicon nitride thin films grown by novel remote plasma sputter deposition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Silicon nitride ($ SiN_{x} $) thin films have been deposited by a new remote plasma deposition system HiTUS (High Target Utilisation Sputtering). The remote plasma geometry allows, pseudo separation of plasma/target-bias parameters, lower ion bombardment, and effectively eliminates poisoning, making it an attractive option for stable reactive sputtering of important electronic and photovoltaic films including silicon nitride. Transmission and absorbance measurements on glass were performed in order to evaluate the absorbance of the silicon nitride thin layer. The $ SiN_{x} $ is produced by reactive sputtering from a silicon target in an Ar/$ N_{2} $ atmosphere, negating the use of silane gas in difference to the more commonly used PECVD method. A deposition rates up to 0.7 nm/s have been obtained. Control of refractive index from 1.9 to 2.3 was achieved by varying the RF target bias, meeting the requirements for silicon passivation in PV applications, with a growth rate independent of refractive index across a wide range. The carrier life time over a range of specified minority carrier densities was measured using a contactless inductively coupled photoconductance tester for 50 ohm cm 〈100〉 oriented silicon wafers coated with different types of $ SiN_{x} $. We found that the passivation action of the silicon nitride increased the carrier lifetime over one order of magnitude.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon Nitride</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma Enhance Chemical Vapour Deposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrate Circuit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon Nitride Film</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote Plasma</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Calnan, Sonya</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bass, Kevin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boreland, Matt</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science / Materials in electronics</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">19(2007), Suppl 1 vom: 11. Dez., Seite 285-288</subfield><subfield code="w">(DE-627)130863289</subfield><subfield code="w">(DE-600)1030929-9</subfield><subfield code="w">(DE-576)023106719</subfield><subfield code="x">0957-4522</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:Suppl 1</subfield><subfield code="g">day:11</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:285-288</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10854-007-9513-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2007</subfield><subfield code="e">Suppl 1</subfield><subfield code="b">11</subfield><subfield code="c">12</subfield><subfield code="h">285-288</subfield></datafield></record></collection>
|
score |
7.401636 |