Anisotropic strain on phonons in a-plane GaN layers studied by Raman scattering
Abstract The strain state of a-plane GaN layers grown on r-plane sapphire was studied by Raman spectroscopy. Some of the layers investigated have been uncoalesced stripe structures grown by epitaxial lateral overgrowth (ELOG). Apart from frequency shifts, anisotropic strain within the a-plane leads...
Ausführliche Beschreibung
Autor*in: |
Irmer, G. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2008 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2008 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science / Materials in electronics - Springer US, 1990, 19(2008), Suppl 1 vom: 20. Jan., Seite 51-57 |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:2008 ; number:Suppl 1 ; day:20 ; month:01 ; pages:51-57 |
Links: |
---|
DOI / URN: |
10.1007/s10854-007-9557-1 |
---|
Katalog-ID: |
OLC2026252815 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026252815 | ||
003 | DE-627 | ||
005 | 20230503125330.0 | ||
007 | tu | ||
008 | 200820s2008 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10854-007-9557-1 |2 doi | |
035 | |a (DE-627)OLC2026252815 | ||
035 | |a (DE-He213)s10854-007-9557-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |a 670 |a 620 |q VZ |
100 | 1 | |a Irmer, G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Anisotropic strain on phonons in a-plane GaN layers studied by Raman scattering |
264 | 1 | |c 2008 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2008 | ||
520 | |a Abstract The strain state of a-plane GaN layers grown on r-plane sapphire was studied by Raman spectroscopy. Some of the layers investigated have been uncoalesced stripe structures grown by epitaxial lateral overgrowth (ELOG). Apart from frequency shifts, anisotropic strain within the a-plane leads to a slight splitting of the twofold degenerate $ E_{1} $ and $ E_{2} $ phonon modes. Information about the nature of strain is obtained from plots of the frequency shift of phonons with different symmetry in selected sample regions. The ratio of the frequency shifts is independent of the absolute phonon frequency of unstrained crystals and is sensitive to the strain state, especially in the case of the $ A_{1} $(TO) and $$ {\text{E}}^{{\text{h}}}_{2} $$ phonons with lattice displacements parallel/perpendicular to the c-axis, respectively. From the Raman data it is concluded that besides biaxial strain in the a-plane due to lattice mismatch and different thermal expansion coefficients of substrate and layer additional hydrostatic components exist originating from the lattice distortion near native defects or impurities. Raman maps of the phonon frequencies and full width at half maximum of the uncoalesced ELOG structures show that the wing above the mask is relaxed and of improved crystalline quality in comparison with the window region. | ||
650 | 4 | |a Phonon Frequency | |
650 | 4 | |a Biaxial Strain | |
650 | 4 | |a Epitaxial Lateral Overgrowth | |
650 | 4 | |a Anisotropic Strain | |
650 | 4 | |a Hydrostatic Strain | |
700 | 1 | |a Brumme, T. |4 aut | |
700 | 1 | |a Herms, M. |4 aut | |
700 | 1 | |a Wernicke, T. |4 aut | |
700 | 1 | |a Kneissl, M. |4 aut | |
700 | 1 | |a Weyers, M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science / Materials in electronics |d Springer US, 1990 |g 19(2008), Suppl 1 vom: 20. Jan., Seite 51-57 |w (DE-627)130863289 |w (DE-600)1030929-9 |w (DE-576)023106719 |x 0957-4522 |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:2008 |g number:Suppl 1 |g day:20 |g month:01 |g pages:51-57 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10854-007-9557-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 19 |j 2008 |e Suppl 1 |b 20 |c 01 |h 51-57 |
author_variant |
g i gi t b tb m h mh t w tw m k mk m w mw |
---|---|
matchkey_str |
article:09574522:2008----::nstoisriopoosnpaealyrsui |
hierarchy_sort_str |
2008 |
publishDate |
2008 |
allfields |
10.1007/s10854-007-9557-1 doi (DE-627)OLC2026252815 (DE-He213)s10854-007-9557-1-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Irmer, G. verfasserin aut Anisotropic strain on phonons in a-plane GaN layers studied by Raman scattering 2008 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2008 Abstract The strain state of a-plane GaN layers grown on r-plane sapphire was studied by Raman spectroscopy. Some of the layers investigated have been uncoalesced stripe structures grown by epitaxial lateral overgrowth (ELOG). Apart from frequency shifts, anisotropic strain within the a-plane leads to a slight splitting of the twofold degenerate $ E_{1} $ and $ E_{2} $ phonon modes. Information about the nature of strain is obtained from plots of the frequency shift of phonons with different symmetry in selected sample regions. The ratio of the frequency shifts is independent of the absolute phonon frequency of unstrained crystals and is sensitive to the strain state, especially in the case of the $ A_{1} $(TO) and $$ {\text{E}}^{{\text{h}}}_{2} $$ phonons with lattice displacements parallel/perpendicular to the c-axis, respectively. From the Raman data it is concluded that besides biaxial strain in the a-plane due to lattice mismatch and different thermal expansion coefficients of substrate and layer additional hydrostatic components exist originating from the lattice distortion near native defects or impurities. Raman maps of the phonon frequencies and full width at half maximum of the uncoalesced ELOG structures show that the wing above the mask is relaxed and of improved crystalline quality in comparison with the window region. Phonon Frequency Biaxial Strain Epitaxial Lateral Overgrowth Anisotropic Strain Hydrostatic Strain Brumme, T. aut Herms, M. aut Wernicke, T. aut Kneissl, M. aut Weyers, M. aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 19(2008), Suppl 1 vom: 20. Jan., Seite 51-57 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:19 year:2008 number:Suppl 1 day:20 month:01 pages:51-57 https://doi.org/10.1007/s10854-007-9557-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 19 2008 Suppl 1 20 01 51-57 |
spelling |
10.1007/s10854-007-9557-1 doi (DE-627)OLC2026252815 (DE-He213)s10854-007-9557-1-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Irmer, G. verfasserin aut Anisotropic strain on phonons in a-plane GaN layers studied by Raman scattering 2008 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2008 Abstract The strain state of a-plane GaN layers grown on r-plane sapphire was studied by Raman spectroscopy. Some of the layers investigated have been uncoalesced stripe structures grown by epitaxial lateral overgrowth (ELOG). Apart from frequency shifts, anisotropic strain within the a-plane leads to a slight splitting of the twofold degenerate $ E_{1} $ and $ E_{2} $ phonon modes. Information about the nature of strain is obtained from plots of the frequency shift of phonons with different symmetry in selected sample regions. The ratio of the frequency shifts is independent of the absolute phonon frequency of unstrained crystals and is sensitive to the strain state, especially in the case of the $ A_{1} $(TO) and $$ {\text{E}}^{{\text{h}}}_{2} $$ phonons with lattice displacements parallel/perpendicular to the c-axis, respectively. From the Raman data it is concluded that besides biaxial strain in the a-plane due to lattice mismatch and different thermal expansion coefficients of substrate and layer additional hydrostatic components exist originating from the lattice distortion near native defects or impurities. Raman maps of the phonon frequencies and full width at half maximum of the uncoalesced ELOG structures show that the wing above the mask is relaxed and of improved crystalline quality in comparison with the window region. Phonon Frequency Biaxial Strain Epitaxial Lateral Overgrowth Anisotropic Strain Hydrostatic Strain Brumme, T. aut Herms, M. aut Wernicke, T. aut Kneissl, M. aut Weyers, M. aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 19(2008), Suppl 1 vom: 20. Jan., Seite 51-57 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:19 year:2008 number:Suppl 1 day:20 month:01 pages:51-57 https://doi.org/10.1007/s10854-007-9557-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 19 2008 Suppl 1 20 01 51-57 |
allfields_unstemmed |
10.1007/s10854-007-9557-1 doi (DE-627)OLC2026252815 (DE-He213)s10854-007-9557-1-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Irmer, G. verfasserin aut Anisotropic strain on phonons in a-plane GaN layers studied by Raman scattering 2008 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2008 Abstract The strain state of a-plane GaN layers grown on r-plane sapphire was studied by Raman spectroscopy. Some of the layers investigated have been uncoalesced stripe structures grown by epitaxial lateral overgrowth (ELOG). Apart from frequency shifts, anisotropic strain within the a-plane leads to a slight splitting of the twofold degenerate $ E_{1} $ and $ E_{2} $ phonon modes. Information about the nature of strain is obtained from plots of the frequency shift of phonons with different symmetry in selected sample regions. The ratio of the frequency shifts is independent of the absolute phonon frequency of unstrained crystals and is sensitive to the strain state, especially in the case of the $ A_{1} $(TO) and $$ {\text{E}}^{{\text{h}}}_{2} $$ phonons with lattice displacements parallel/perpendicular to the c-axis, respectively. From the Raman data it is concluded that besides biaxial strain in the a-plane due to lattice mismatch and different thermal expansion coefficients of substrate and layer additional hydrostatic components exist originating from the lattice distortion near native defects or impurities. Raman maps of the phonon frequencies and full width at half maximum of the uncoalesced ELOG structures show that the wing above the mask is relaxed and of improved crystalline quality in comparison with the window region. Phonon Frequency Biaxial Strain Epitaxial Lateral Overgrowth Anisotropic Strain Hydrostatic Strain Brumme, T. aut Herms, M. aut Wernicke, T. aut Kneissl, M. aut Weyers, M. aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 19(2008), Suppl 1 vom: 20. Jan., Seite 51-57 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:19 year:2008 number:Suppl 1 day:20 month:01 pages:51-57 https://doi.org/10.1007/s10854-007-9557-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 19 2008 Suppl 1 20 01 51-57 |
allfieldsGer |
10.1007/s10854-007-9557-1 doi (DE-627)OLC2026252815 (DE-He213)s10854-007-9557-1-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Irmer, G. verfasserin aut Anisotropic strain on phonons in a-plane GaN layers studied by Raman scattering 2008 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2008 Abstract The strain state of a-plane GaN layers grown on r-plane sapphire was studied by Raman spectroscopy. Some of the layers investigated have been uncoalesced stripe structures grown by epitaxial lateral overgrowth (ELOG). Apart from frequency shifts, anisotropic strain within the a-plane leads to a slight splitting of the twofold degenerate $ E_{1} $ and $ E_{2} $ phonon modes. Information about the nature of strain is obtained from plots of the frequency shift of phonons with different symmetry in selected sample regions. The ratio of the frequency shifts is independent of the absolute phonon frequency of unstrained crystals and is sensitive to the strain state, especially in the case of the $ A_{1} $(TO) and $$ {\text{E}}^{{\text{h}}}_{2} $$ phonons with lattice displacements parallel/perpendicular to the c-axis, respectively. From the Raman data it is concluded that besides biaxial strain in the a-plane due to lattice mismatch and different thermal expansion coefficients of substrate and layer additional hydrostatic components exist originating from the lattice distortion near native defects or impurities. Raman maps of the phonon frequencies and full width at half maximum of the uncoalesced ELOG structures show that the wing above the mask is relaxed and of improved crystalline quality in comparison with the window region. Phonon Frequency Biaxial Strain Epitaxial Lateral Overgrowth Anisotropic Strain Hydrostatic Strain Brumme, T. aut Herms, M. aut Wernicke, T. aut Kneissl, M. aut Weyers, M. aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 19(2008), Suppl 1 vom: 20. Jan., Seite 51-57 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:19 year:2008 number:Suppl 1 day:20 month:01 pages:51-57 https://doi.org/10.1007/s10854-007-9557-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 19 2008 Suppl 1 20 01 51-57 |
allfieldsSound |
10.1007/s10854-007-9557-1 doi (DE-627)OLC2026252815 (DE-He213)s10854-007-9557-1-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Irmer, G. verfasserin aut Anisotropic strain on phonons in a-plane GaN layers studied by Raman scattering 2008 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2008 Abstract The strain state of a-plane GaN layers grown on r-plane sapphire was studied by Raman spectroscopy. Some of the layers investigated have been uncoalesced stripe structures grown by epitaxial lateral overgrowth (ELOG). Apart from frequency shifts, anisotropic strain within the a-plane leads to a slight splitting of the twofold degenerate $ E_{1} $ and $ E_{2} $ phonon modes. Information about the nature of strain is obtained from plots of the frequency shift of phonons with different symmetry in selected sample regions. The ratio of the frequency shifts is independent of the absolute phonon frequency of unstrained crystals and is sensitive to the strain state, especially in the case of the $ A_{1} $(TO) and $$ {\text{E}}^{{\text{h}}}_{2} $$ phonons with lattice displacements parallel/perpendicular to the c-axis, respectively. From the Raman data it is concluded that besides biaxial strain in the a-plane due to lattice mismatch and different thermal expansion coefficients of substrate and layer additional hydrostatic components exist originating from the lattice distortion near native defects or impurities. Raman maps of the phonon frequencies and full width at half maximum of the uncoalesced ELOG structures show that the wing above the mask is relaxed and of improved crystalline quality in comparison with the window region. Phonon Frequency Biaxial Strain Epitaxial Lateral Overgrowth Anisotropic Strain Hydrostatic Strain Brumme, T. aut Herms, M. aut Wernicke, T. aut Kneissl, M. aut Weyers, M. aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 19(2008), Suppl 1 vom: 20. Jan., Seite 51-57 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:19 year:2008 number:Suppl 1 day:20 month:01 pages:51-57 https://doi.org/10.1007/s10854-007-9557-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 19 2008 Suppl 1 20 01 51-57 |
language |
English |
source |
Enthalten in Journal of materials science / Materials in electronics 19(2008), Suppl 1 vom: 20. Jan., Seite 51-57 volume:19 year:2008 number:Suppl 1 day:20 month:01 pages:51-57 |
sourceStr |
Enthalten in Journal of materials science / Materials in electronics 19(2008), Suppl 1 vom: 20. Jan., Seite 51-57 volume:19 year:2008 number:Suppl 1 day:20 month:01 pages:51-57 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Phonon Frequency Biaxial Strain Epitaxial Lateral Overgrowth Anisotropic Strain Hydrostatic Strain |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science / Materials in electronics |
authorswithroles_txt_mv |
Irmer, G. @@aut@@ Brumme, T. @@aut@@ Herms, M. @@aut@@ Wernicke, T. @@aut@@ Kneissl, M. @@aut@@ Weyers, M. @@aut@@ |
publishDateDaySort_date |
2008-01-20T00:00:00Z |
hierarchy_top_id |
130863289 |
dewey-sort |
3600 |
id |
OLC2026252815 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026252815</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503125330.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2008 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10854-007-9557-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026252815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10854-007-9557-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Irmer, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Anisotropic strain on phonons in a-plane GaN layers studied by Raman scattering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2008</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The strain state of a-plane GaN layers grown on r-plane sapphire was studied by Raman spectroscopy. Some of the layers investigated have been uncoalesced stripe structures grown by epitaxial lateral overgrowth (ELOG). Apart from frequency shifts, anisotropic strain within the a-plane leads to a slight splitting of the twofold degenerate $ E_{1} $ and $ E_{2} $ phonon modes. Information about the nature of strain is obtained from plots of the frequency shift of phonons with different symmetry in selected sample regions. The ratio of the frequency shifts is independent of the absolute phonon frequency of unstrained crystals and is sensitive to the strain state, especially in the case of the $ A_{1} $(TO) and $$ {\text{E}}^{{\text{h}}}_{2} $$ phonons with lattice displacements parallel/perpendicular to the c-axis, respectively. From the Raman data it is concluded that besides biaxial strain in the a-plane due to lattice mismatch and different thermal expansion coefficients of substrate and layer additional hydrostatic components exist originating from the lattice distortion near native defects or impurities. Raman maps of the phonon frequencies and full width at half maximum of the uncoalesced ELOG structures show that the wing above the mask is relaxed and of improved crystalline quality in comparison with the window region.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phonon Frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biaxial Strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epitaxial Lateral Overgrowth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anisotropic Strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrostatic Strain</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brumme, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Herms, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wernicke, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kneissl, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weyers, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science / Materials in electronics</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">19(2008), Suppl 1 vom: 20. Jan., Seite 51-57</subfield><subfield code="w">(DE-627)130863289</subfield><subfield code="w">(DE-600)1030929-9</subfield><subfield code="w">(DE-576)023106719</subfield><subfield code="x">0957-4522</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:Suppl 1</subfield><subfield code="g">day:20</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:51-57</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10854-007-9557-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2008</subfield><subfield code="e">Suppl 1</subfield><subfield code="b">20</subfield><subfield code="c">01</subfield><subfield code="h">51-57</subfield></datafield></record></collection>
|
author |
Irmer, G. |
spellingShingle |
Irmer, G. ddc 600 misc Phonon Frequency misc Biaxial Strain misc Epitaxial Lateral Overgrowth misc Anisotropic Strain misc Hydrostatic Strain Anisotropic strain on phonons in a-plane GaN layers studied by Raman scattering |
authorStr |
Irmer, G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130863289 |
format |
Article |
dewey-ones |
600 - Technology 670 - Manufacturing 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0957-4522 |
topic_title |
600 670 620 VZ Anisotropic strain on phonons in a-plane GaN layers studied by Raman scattering Phonon Frequency Biaxial Strain Epitaxial Lateral Overgrowth Anisotropic Strain Hydrostatic Strain |
topic |
ddc 600 misc Phonon Frequency misc Biaxial Strain misc Epitaxial Lateral Overgrowth misc Anisotropic Strain misc Hydrostatic Strain |
topic_unstemmed |
ddc 600 misc Phonon Frequency misc Biaxial Strain misc Epitaxial Lateral Overgrowth misc Anisotropic Strain misc Hydrostatic Strain |
topic_browse |
ddc 600 misc Phonon Frequency misc Biaxial Strain misc Epitaxial Lateral Overgrowth misc Anisotropic Strain misc Hydrostatic Strain |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science / Materials in electronics |
hierarchy_parent_id |
130863289 |
dewey-tens |
600 - Technology 670 - Manufacturing 620 - Engineering |
hierarchy_top_title |
Journal of materials science / Materials in electronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 |
title |
Anisotropic strain on phonons in a-plane GaN layers studied by Raman scattering |
ctrlnum |
(DE-627)OLC2026252815 (DE-He213)s10854-007-9557-1-p |
title_full |
Anisotropic strain on phonons in a-plane GaN layers studied by Raman scattering |
author_sort |
Irmer, G. |
journal |
Journal of materials science / Materials in electronics |
journalStr |
Journal of materials science / Materials in electronics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2008 |
contenttype_str_mv |
txt |
container_start_page |
51 |
author_browse |
Irmer, G. Brumme, T. Herms, M. Wernicke, T. Kneissl, M. Weyers, M. |
container_volume |
19 |
class |
600 670 620 VZ |
format_se |
Aufsätze |
author-letter |
Irmer, G. |
doi_str_mv |
10.1007/s10854-007-9557-1 |
dewey-full |
600 670 620 |
title_sort |
anisotropic strain on phonons in a-plane gan layers studied by raman scattering |
title_auth |
Anisotropic strain on phonons in a-plane GaN layers studied by Raman scattering |
abstract |
Abstract The strain state of a-plane GaN layers grown on r-plane sapphire was studied by Raman spectroscopy. Some of the layers investigated have been uncoalesced stripe structures grown by epitaxial lateral overgrowth (ELOG). Apart from frequency shifts, anisotropic strain within the a-plane leads to a slight splitting of the twofold degenerate $ E_{1} $ and $ E_{2} $ phonon modes. Information about the nature of strain is obtained from plots of the frequency shift of phonons with different symmetry in selected sample regions. The ratio of the frequency shifts is independent of the absolute phonon frequency of unstrained crystals and is sensitive to the strain state, especially in the case of the $ A_{1} $(TO) and $$ {\text{E}}^{{\text{h}}}_{2} $$ phonons with lattice displacements parallel/perpendicular to the c-axis, respectively. From the Raman data it is concluded that besides biaxial strain in the a-plane due to lattice mismatch and different thermal expansion coefficients of substrate and layer additional hydrostatic components exist originating from the lattice distortion near native defects or impurities. Raman maps of the phonon frequencies and full width at half maximum of the uncoalesced ELOG structures show that the wing above the mask is relaxed and of improved crystalline quality in comparison with the window region. © Springer Science+Business Media, LLC 2008 |
abstractGer |
Abstract The strain state of a-plane GaN layers grown on r-plane sapphire was studied by Raman spectroscopy. Some of the layers investigated have been uncoalesced stripe structures grown by epitaxial lateral overgrowth (ELOG). Apart from frequency shifts, anisotropic strain within the a-plane leads to a slight splitting of the twofold degenerate $ E_{1} $ and $ E_{2} $ phonon modes. Information about the nature of strain is obtained from plots of the frequency shift of phonons with different symmetry in selected sample regions. The ratio of the frequency shifts is independent of the absolute phonon frequency of unstrained crystals and is sensitive to the strain state, especially in the case of the $ A_{1} $(TO) and $$ {\text{E}}^{{\text{h}}}_{2} $$ phonons with lattice displacements parallel/perpendicular to the c-axis, respectively. From the Raman data it is concluded that besides biaxial strain in the a-plane due to lattice mismatch and different thermal expansion coefficients of substrate and layer additional hydrostatic components exist originating from the lattice distortion near native defects or impurities. Raman maps of the phonon frequencies and full width at half maximum of the uncoalesced ELOG structures show that the wing above the mask is relaxed and of improved crystalline quality in comparison with the window region. © Springer Science+Business Media, LLC 2008 |
abstract_unstemmed |
Abstract The strain state of a-plane GaN layers grown on r-plane sapphire was studied by Raman spectroscopy. Some of the layers investigated have been uncoalesced stripe structures grown by epitaxial lateral overgrowth (ELOG). Apart from frequency shifts, anisotropic strain within the a-plane leads to a slight splitting of the twofold degenerate $ E_{1} $ and $ E_{2} $ phonon modes. Information about the nature of strain is obtained from plots of the frequency shift of phonons with different symmetry in selected sample regions. The ratio of the frequency shifts is independent of the absolute phonon frequency of unstrained crystals and is sensitive to the strain state, especially in the case of the $ A_{1} $(TO) and $$ {\text{E}}^{{\text{h}}}_{2} $$ phonons with lattice displacements parallel/perpendicular to the c-axis, respectively. From the Raman data it is concluded that besides biaxial strain in the a-plane due to lattice mismatch and different thermal expansion coefficients of substrate and layer additional hydrostatic components exist originating from the lattice distortion near native defects or impurities. Raman maps of the phonon frequencies and full width at half maximum of the uncoalesced ELOG structures show that the wing above the mask is relaxed and of improved crystalline quality in comparison with the window region. © Springer Science+Business Media, LLC 2008 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 |
container_issue |
Suppl 1 |
title_short |
Anisotropic strain on phonons in a-plane GaN layers studied by Raman scattering |
url |
https://doi.org/10.1007/s10854-007-9557-1 |
remote_bool |
false |
author2 |
Brumme, T. Herms, M. Wernicke, T. Kneissl, M. Weyers, M. |
author2Str |
Brumme, T. Herms, M. Wernicke, T. Kneissl, M. Weyers, M. |
ppnlink |
130863289 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10854-007-9557-1 |
up_date |
2024-07-04T03:29:44.745Z |
_version_ |
1803617603169550336 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026252815</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503125330.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2008 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10854-007-9557-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026252815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10854-007-9557-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Irmer, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Anisotropic strain on phonons in a-plane GaN layers studied by Raman scattering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2008</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The strain state of a-plane GaN layers grown on r-plane sapphire was studied by Raman spectroscopy. Some of the layers investigated have been uncoalesced stripe structures grown by epitaxial lateral overgrowth (ELOG). Apart from frequency shifts, anisotropic strain within the a-plane leads to a slight splitting of the twofold degenerate $ E_{1} $ and $ E_{2} $ phonon modes. Information about the nature of strain is obtained from plots of the frequency shift of phonons with different symmetry in selected sample regions. The ratio of the frequency shifts is independent of the absolute phonon frequency of unstrained crystals and is sensitive to the strain state, especially in the case of the $ A_{1} $(TO) and $$ {\text{E}}^{{\text{h}}}_{2} $$ phonons with lattice displacements parallel/perpendicular to the c-axis, respectively. From the Raman data it is concluded that besides biaxial strain in the a-plane due to lattice mismatch and different thermal expansion coefficients of substrate and layer additional hydrostatic components exist originating from the lattice distortion near native defects or impurities. Raman maps of the phonon frequencies and full width at half maximum of the uncoalesced ELOG structures show that the wing above the mask is relaxed and of improved crystalline quality in comparison with the window region.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phonon Frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biaxial Strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epitaxial Lateral Overgrowth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anisotropic Strain</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrostatic Strain</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brumme, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Herms, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wernicke, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kneissl, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weyers, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science / Materials in electronics</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">19(2008), Suppl 1 vom: 20. Jan., Seite 51-57</subfield><subfield code="w">(DE-627)130863289</subfield><subfield code="w">(DE-600)1030929-9</subfield><subfield code="w">(DE-576)023106719</subfield><subfield code="x">0957-4522</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:Suppl 1</subfield><subfield code="g">day:20</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:51-57</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10854-007-9557-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2008</subfield><subfield code="e">Suppl 1</subfield><subfield code="b">20</subfield><subfield code="c">01</subfield><subfield code="h">51-57</subfield></datafield></record></collection>
|
score |
7.3994675 |