Investigation of the effect of solidification processing parameters on the rod spacings and variation of microhardness with the rod spacing in the Sn–Cu hypereutectic alloy
Abstract Sn–3 wt% Cu hypereutectic alloy was prepared in a graphite crucible under the vacuum atmosphere. The samples were directionally solidified upwards under argon atmosphere with different temperature gradients (G = 4.24–8.09 K/mm) at a constant growth rate (V = 7.64 μm/s) and with different gr...
Ausführliche Beschreibung
Autor*in: |
Çadırlı, E. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2009 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2009 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science / Materials in electronics - Springer US, 1990, 21(2009), 6 vom: 28. Aug., Seite 608-618 |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2009 ; number:6 ; day:28 ; month:08 ; pages:608-618 |
Links: |
---|
DOI / URN: |
10.1007/s10854-009-9965-5 |
---|
Katalog-ID: |
OLC2026258406 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026258406 | ||
003 | DE-627 | ||
005 | 20230503125404.0 | ||
007 | tu | ||
008 | 200820s2009 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10854-009-9965-5 |2 doi | |
035 | |a (DE-627)OLC2026258406 | ||
035 | |a (DE-He213)s10854-009-9965-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |a 670 |a 620 |q VZ |
100 | 1 | |a Çadırlı, E. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Investigation of the effect of solidification processing parameters on the rod spacings and variation of microhardness with the rod spacing in the Sn–Cu hypereutectic alloy |
264 | 1 | |c 2009 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2009 | ||
520 | |a Abstract Sn–3 wt% Cu hypereutectic alloy was prepared in a graphite crucible under the vacuum atmosphere. The samples were directionally solidified upwards under argon atmosphere with different temperature gradients (G = 4.24–8.09 K/mm) at a constant growth rate (V = 7.64 μm/s) and with different growth rates (V = 2.24–133.33 μm/s) at a constant temperature gradient (G = 4.24 K/mm) by using a Bridgman type directional solidification apparatus. The microstructure of directional solidified Sn–3 wt% Cu alloy seems to be rod eutectic structure. The influence of the growth rate (V) and temperature gradient (G) on the rod spacing (λ) and undercooling (ΔT) were analysed. The values of $ λ^{2} $V, $ λ^{2} $G, ΔTλ, $ ΔTV^{−0.5} $ and $ ΔTG^{−0.5} $ were determined by using the Jackson–Hunt eutectic theory. The dependence of microhardness (HV) on the rod spacing (λ) was analyzed. According to present results, it has been found that the value of HV increases with the increasing the value of λ. | ||
650 | 4 | |a Temperature Gradient | |
650 | 4 | |a Constant Growth Rate | |
650 | 4 | |a Hypereutectic Alloy | |
650 | 4 | |a Constant Temperature Gradient | |
650 | 4 | |a Growth Rate Versus | |
700 | 1 | |a Böyük, U. |4 aut | |
700 | 1 | |a Engin, S. |4 aut | |
700 | 1 | |a Kaya, H. |4 aut | |
700 | 1 | |a Maraşlı, N. |4 aut | |
700 | 1 | |a Keşlioğlu, K. |4 aut | |
700 | 1 | |a Ülgen, A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science / Materials in electronics |d Springer US, 1990 |g 21(2009), 6 vom: 28. Aug., Seite 608-618 |w (DE-627)130863289 |w (DE-600)1030929-9 |w (DE-576)023106719 |x 0957-4522 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2009 |g number:6 |g day:28 |g month:08 |g pages:608-618 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10854-009-9965-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 21 |j 2009 |e 6 |b 28 |c 08 |h 608-618 |
author_variant |
e ç eç u b ub s e se h k hk n m nm k k kk a ü aü |
---|---|
matchkey_str |
article:09574522:2009----::netgtootefetfoiiiainrcsigaaeesnhrdpcnsnvrainfirhrnswtt |
hierarchy_sort_str |
2009 |
publishDate |
2009 |
allfields |
10.1007/s10854-009-9965-5 doi (DE-627)OLC2026258406 (DE-He213)s10854-009-9965-5-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Çadırlı, E. verfasserin aut Investigation of the effect of solidification processing parameters on the rod spacings and variation of microhardness with the rod spacing in the Sn–Cu hypereutectic alloy 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2009 Abstract Sn–3 wt% Cu hypereutectic alloy was prepared in a graphite crucible under the vacuum atmosphere. The samples were directionally solidified upwards under argon atmosphere with different temperature gradients (G = 4.24–8.09 K/mm) at a constant growth rate (V = 7.64 μm/s) and with different growth rates (V = 2.24–133.33 μm/s) at a constant temperature gradient (G = 4.24 K/mm) by using a Bridgman type directional solidification apparatus. The microstructure of directional solidified Sn–3 wt% Cu alloy seems to be rod eutectic structure. The influence of the growth rate (V) and temperature gradient (G) on the rod spacing (λ) and undercooling (ΔT) were analysed. The values of $ λ^{2} $V, $ λ^{2} $G, ΔTλ, $ ΔTV^{−0.5} $ and $ ΔTG^{−0.5} $ were determined by using the Jackson–Hunt eutectic theory. The dependence of microhardness (HV) on the rod spacing (λ) was analyzed. According to present results, it has been found that the value of HV increases with the increasing the value of λ. Temperature Gradient Constant Growth Rate Hypereutectic Alloy Constant Temperature Gradient Growth Rate Versus Böyük, U. aut Engin, S. aut Kaya, H. aut Maraşlı, N. aut Keşlioğlu, K. aut Ülgen, A. aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 21(2009), 6 vom: 28. Aug., Seite 608-618 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:21 year:2009 number:6 day:28 month:08 pages:608-618 https://doi.org/10.1007/s10854-009-9965-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 21 2009 6 28 08 608-618 |
spelling |
10.1007/s10854-009-9965-5 doi (DE-627)OLC2026258406 (DE-He213)s10854-009-9965-5-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Çadırlı, E. verfasserin aut Investigation of the effect of solidification processing parameters on the rod spacings and variation of microhardness with the rod spacing in the Sn–Cu hypereutectic alloy 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2009 Abstract Sn–3 wt% Cu hypereutectic alloy was prepared in a graphite crucible under the vacuum atmosphere. The samples were directionally solidified upwards under argon atmosphere with different temperature gradients (G = 4.24–8.09 K/mm) at a constant growth rate (V = 7.64 μm/s) and with different growth rates (V = 2.24–133.33 μm/s) at a constant temperature gradient (G = 4.24 K/mm) by using a Bridgman type directional solidification apparatus. The microstructure of directional solidified Sn–3 wt% Cu alloy seems to be rod eutectic structure. The influence of the growth rate (V) and temperature gradient (G) on the rod spacing (λ) and undercooling (ΔT) were analysed. The values of $ λ^{2} $V, $ λ^{2} $G, ΔTλ, $ ΔTV^{−0.5} $ and $ ΔTG^{−0.5} $ were determined by using the Jackson–Hunt eutectic theory. The dependence of microhardness (HV) on the rod spacing (λ) was analyzed. According to present results, it has been found that the value of HV increases with the increasing the value of λ. Temperature Gradient Constant Growth Rate Hypereutectic Alloy Constant Temperature Gradient Growth Rate Versus Böyük, U. aut Engin, S. aut Kaya, H. aut Maraşlı, N. aut Keşlioğlu, K. aut Ülgen, A. aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 21(2009), 6 vom: 28. Aug., Seite 608-618 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:21 year:2009 number:6 day:28 month:08 pages:608-618 https://doi.org/10.1007/s10854-009-9965-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 21 2009 6 28 08 608-618 |
allfields_unstemmed |
10.1007/s10854-009-9965-5 doi (DE-627)OLC2026258406 (DE-He213)s10854-009-9965-5-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Çadırlı, E. verfasserin aut Investigation of the effect of solidification processing parameters on the rod spacings and variation of microhardness with the rod spacing in the Sn–Cu hypereutectic alloy 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2009 Abstract Sn–3 wt% Cu hypereutectic alloy was prepared in a graphite crucible under the vacuum atmosphere. The samples were directionally solidified upwards under argon atmosphere with different temperature gradients (G = 4.24–8.09 K/mm) at a constant growth rate (V = 7.64 μm/s) and with different growth rates (V = 2.24–133.33 μm/s) at a constant temperature gradient (G = 4.24 K/mm) by using a Bridgman type directional solidification apparatus. The microstructure of directional solidified Sn–3 wt% Cu alloy seems to be rod eutectic structure. The influence of the growth rate (V) and temperature gradient (G) on the rod spacing (λ) and undercooling (ΔT) were analysed. The values of $ λ^{2} $V, $ λ^{2} $G, ΔTλ, $ ΔTV^{−0.5} $ and $ ΔTG^{−0.5} $ were determined by using the Jackson–Hunt eutectic theory. The dependence of microhardness (HV) on the rod spacing (λ) was analyzed. According to present results, it has been found that the value of HV increases with the increasing the value of λ. Temperature Gradient Constant Growth Rate Hypereutectic Alloy Constant Temperature Gradient Growth Rate Versus Böyük, U. aut Engin, S. aut Kaya, H. aut Maraşlı, N. aut Keşlioğlu, K. aut Ülgen, A. aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 21(2009), 6 vom: 28. Aug., Seite 608-618 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:21 year:2009 number:6 day:28 month:08 pages:608-618 https://doi.org/10.1007/s10854-009-9965-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 21 2009 6 28 08 608-618 |
allfieldsGer |
10.1007/s10854-009-9965-5 doi (DE-627)OLC2026258406 (DE-He213)s10854-009-9965-5-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Çadırlı, E. verfasserin aut Investigation of the effect of solidification processing parameters on the rod spacings and variation of microhardness with the rod spacing in the Sn–Cu hypereutectic alloy 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2009 Abstract Sn–3 wt% Cu hypereutectic alloy was prepared in a graphite crucible under the vacuum atmosphere. The samples were directionally solidified upwards under argon atmosphere with different temperature gradients (G = 4.24–8.09 K/mm) at a constant growth rate (V = 7.64 μm/s) and with different growth rates (V = 2.24–133.33 μm/s) at a constant temperature gradient (G = 4.24 K/mm) by using a Bridgman type directional solidification apparatus. The microstructure of directional solidified Sn–3 wt% Cu alloy seems to be rod eutectic structure. The influence of the growth rate (V) and temperature gradient (G) on the rod spacing (λ) and undercooling (ΔT) were analysed. The values of $ λ^{2} $V, $ λ^{2} $G, ΔTλ, $ ΔTV^{−0.5} $ and $ ΔTG^{−0.5} $ were determined by using the Jackson–Hunt eutectic theory. The dependence of microhardness (HV) on the rod spacing (λ) was analyzed. According to present results, it has been found that the value of HV increases with the increasing the value of λ. Temperature Gradient Constant Growth Rate Hypereutectic Alloy Constant Temperature Gradient Growth Rate Versus Böyük, U. aut Engin, S. aut Kaya, H. aut Maraşlı, N. aut Keşlioğlu, K. aut Ülgen, A. aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 21(2009), 6 vom: 28. Aug., Seite 608-618 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:21 year:2009 number:6 day:28 month:08 pages:608-618 https://doi.org/10.1007/s10854-009-9965-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 21 2009 6 28 08 608-618 |
allfieldsSound |
10.1007/s10854-009-9965-5 doi (DE-627)OLC2026258406 (DE-He213)s10854-009-9965-5-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Çadırlı, E. verfasserin aut Investigation of the effect of solidification processing parameters on the rod spacings and variation of microhardness with the rod spacing in the Sn–Cu hypereutectic alloy 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2009 Abstract Sn–3 wt% Cu hypereutectic alloy was prepared in a graphite crucible under the vacuum atmosphere. The samples were directionally solidified upwards under argon atmosphere with different temperature gradients (G = 4.24–8.09 K/mm) at a constant growth rate (V = 7.64 μm/s) and with different growth rates (V = 2.24–133.33 μm/s) at a constant temperature gradient (G = 4.24 K/mm) by using a Bridgman type directional solidification apparatus. The microstructure of directional solidified Sn–3 wt% Cu alloy seems to be rod eutectic structure. The influence of the growth rate (V) and temperature gradient (G) on the rod spacing (λ) and undercooling (ΔT) were analysed. The values of $ λ^{2} $V, $ λ^{2} $G, ΔTλ, $ ΔTV^{−0.5} $ and $ ΔTG^{−0.5} $ were determined by using the Jackson–Hunt eutectic theory. The dependence of microhardness (HV) on the rod spacing (λ) was analyzed. According to present results, it has been found that the value of HV increases with the increasing the value of λ. Temperature Gradient Constant Growth Rate Hypereutectic Alloy Constant Temperature Gradient Growth Rate Versus Böyük, U. aut Engin, S. aut Kaya, H. aut Maraşlı, N. aut Keşlioğlu, K. aut Ülgen, A. aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 21(2009), 6 vom: 28. Aug., Seite 608-618 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:21 year:2009 number:6 day:28 month:08 pages:608-618 https://doi.org/10.1007/s10854-009-9965-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 21 2009 6 28 08 608-618 |
language |
English |
source |
Enthalten in Journal of materials science / Materials in electronics 21(2009), 6 vom: 28. Aug., Seite 608-618 volume:21 year:2009 number:6 day:28 month:08 pages:608-618 |
sourceStr |
Enthalten in Journal of materials science / Materials in electronics 21(2009), 6 vom: 28. Aug., Seite 608-618 volume:21 year:2009 number:6 day:28 month:08 pages:608-618 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Temperature Gradient Constant Growth Rate Hypereutectic Alloy Constant Temperature Gradient Growth Rate Versus |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science / Materials in electronics |
authorswithroles_txt_mv |
Çadırlı, E. @@aut@@ Böyük, U. @@aut@@ Engin, S. @@aut@@ Kaya, H. @@aut@@ Maraşlı, N. @@aut@@ Keşlioğlu, K. @@aut@@ Ülgen, A. @@aut@@ |
publishDateDaySort_date |
2009-08-28T00:00:00Z |
hierarchy_top_id |
130863289 |
dewey-sort |
3600 |
id |
OLC2026258406 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026258406</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503125404.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2009 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10854-009-9965-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026258406</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10854-009-9965-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Çadırlı, E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigation of the effect of solidification processing parameters on the rod spacings and variation of microhardness with the rod spacing in the Sn–Cu hypereutectic alloy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Sn–3 wt% Cu hypereutectic alloy was prepared in a graphite crucible under the vacuum atmosphere. The samples were directionally solidified upwards under argon atmosphere with different temperature gradients (G = 4.24–8.09 K/mm) at a constant growth rate (V = 7.64 μm/s) and with different growth rates (V = 2.24–133.33 μm/s) at a constant temperature gradient (G = 4.24 K/mm) by using a Bridgman type directional solidification apparatus. The microstructure of directional solidified Sn–3 wt% Cu alloy seems to be rod eutectic structure. The influence of the growth rate (V) and temperature gradient (G) on the rod spacing (λ) and undercooling (ΔT) were analysed. The values of $ λ^{2} $V, $ λ^{2} $G, ΔTλ, $ ΔTV^{−0.5} $ and $ ΔTG^{−0.5} $ were determined by using the Jackson–Hunt eutectic theory. The dependence of microhardness (HV) on the rod spacing (λ) was analyzed. According to present results, it has been found that the value of HV increases with the increasing the value of λ.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature Gradient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constant Growth Rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypereutectic Alloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constant Temperature Gradient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Growth Rate Versus</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Böyük, U.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Engin, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaya, H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maraşlı, N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Keşlioğlu, K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ülgen, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science / Materials in electronics</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">21(2009), 6 vom: 28. Aug., Seite 608-618</subfield><subfield code="w">(DE-627)130863289</subfield><subfield code="w">(DE-600)1030929-9</subfield><subfield code="w">(DE-576)023106719</subfield><subfield code="x">0957-4522</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:6</subfield><subfield code="g">day:28</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:608-618</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10854-009-9965-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2009</subfield><subfield code="e">6</subfield><subfield code="b">28</subfield><subfield code="c">08</subfield><subfield code="h">608-618</subfield></datafield></record></collection>
|
author |
Çadırlı, E. |
spellingShingle |
Çadırlı, E. ddc 600 misc Temperature Gradient misc Constant Growth Rate misc Hypereutectic Alloy misc Constant Temperature Gradient misc Growth Rate Versus Investigation of the effect of solidification processing parameters on the rod spacings and variation of microhardness with the rod spacing in the Sn–Cu hypereutectic alloy |
authorStr |
Çadırlı, E. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130863289 |
format |
Article |
dewey-ones |
600 - Technology 670 - Manufacturing 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0957-4522 |
topic_title |
600 670 620 VZ Investigation of the effect of solidification processing parameters on the rod spacings and variation of microhardness with the rod spacing in the Sn–Cu hypereutectic alloy Temperature Gradient Constant Growth Rate Hypereutectic Alloy Constant Temperature Gradient Growth Rate Versus |
topic |
ddc 600 misc Temperature Gradient misc Constant Growth Rate misc Hypereutectic Alloy misc Constant Temperature Gradient misc Growth Rate Versus |
topic_unstemmed |
ddc 600 misc Temperature Gradient misc Constant Growth Rate misc Hypereutectic Alloy misc Constant Temperature Gradient misc Growth Rate Versus |
topic_browse |
ddc 600 misc Temperature Gradient misc Constant Growth Rate misc Hypereutectic Alloy misc Constant Temperature Gradient misc Growth Rate Versus |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science / Materials in electronics |
hierarchy_parent_id |
130863289 |
dewey-tens |
600 - Technology 670 - Manufacturing 620 - Engineering |
hierarchy_top_title |
Journal of materials science / Materials in electronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 |
title |
Investigation of the effect of solidification processing parameters on the rod spacings and variation of microhardness with the rod spacing in the Sn–Cu hypereutectic alloy |
ctrlnum |
(DE-627)OLC2026258406 (DE-He213)s10854-009-9965-5-p |
title_full |
Investigation of the effect of solidification processing parameters on the rod spacings and variation of microhardness with the rod spacing in the Sn–Cu hypereutectic alloy |
author_sort |
Çadırlı, E. |
journal |
Journal of materials science / Materials in electronics |
journalStr |
Journal of materials science / Materials in electronics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2009 |
contenttype_str_mv |
txt |
container_start_page |
608 |
author_browse |
Çadırlı, E. Böyük, U. Engin, S. Kaya, H. Maraşlı, N. Keşlioğlu, K. Ülgen, A. |
container_volume |
21 |
class |
600 670 620 VZ |
format_se |
Aufsätze |
author-letter |
Çadırlı, E. |
doi_str_mv |
10.1007/s10854-009-9965-5 |
dewey-full |
600 670 620 |
title_sort |
investigation of the effect of solidification processing parameters on the rod spacings and variation of microhardness with the rod spacing in the sn–cu hypereutectic alloy |
title_auth |
Investigation of the effect of solidification processing parameters on the rod spacings and variation of microhardness with the rod spacing in the Sn–Cu hypereutectic alloy |
abstract |
Abstract Sn–3 wt% Cu hypereutectic alloy was prepared in a graphite crucible under the vacuum atmosphere. The samples were directionally solidified upwards under argon atmosphere with different temperature gradients (G = 4.24–8.09 K/mm) at a constant growth rate (V = 7.64 μm/s) and with different growth rates (V = 2.24–133.33 μm/s) at a constant temperature gradient (G = 4.24 K/mm) by using a Bridgman type directional solidification apparatus. The microstructure of directional solidified Sn–3 wt% Cu alloy seems to be rod eutectic structure. The influence of the growth rate (V) and temperature gradient (G) on the rod spacing (λ) and undercooling (ΔT) were analysed. The values of $ λ^{2} $V, $ λ^{2} $G, ΔTλ, $ ΔTV^{−0.5} $ and $ ΔTG^{−0.5} $ were determined by using the Jackson–Hunt eutectic theory. The dependence of microhardness (HV) on the rod spacing (λ) was analyzed. According to present results, it has been found that the value of HV increases with the increasing the value of λ. © Springer Science+Business Media, LLC 2009 |
abstractGer |
Abstract Sn–3 wt% Cu hypereutectic alloy was prepared in a graphite crucible under the vacuum atmosphere. The samples were directionally solidified upwards under argon atmosphere with different temperature gradients (G = 4.24–8.09 K/mm) at a constant growth rate (V = 7.64 μm/s) and with different growth rates (V = 2.24–133.33 μm/s) at a constant temperature gradient (G = 4.24 K/mm) by using a Bridgman type directional solidification apparatus. The microstructure of directional solidified Sn–3 wt% Cu alloy seems to be rod eutectic structure. The influence of the growth rate (V) and temperature gradient (G) on the rod spacing (λ) and undercooling (ΔT) were analysed. The values of $ λ^{2} $V, $ λ^{2} $G, ΔTλ, $ ΔTV^{−0.5} $ and $ ΔTG^{−0.5} $ were determined by using the Jackson–Hunt eutectic theory. The dependence of microhardness (HV) on the rod spacing (λ) was analyzed. According to present results, it has been found that the value of HV increases with the increasing the value of λ. © Springer Science+Business Media, LLC 2009 |
abstract_unstemmed |
Abstract Sn–3 wt% Cu hypereutectic alloy was prepared in a graphite crucible under the vacuum atmosphere. The samples were directionally solidified upwards under argon atmosphere with different temperature gradients (G = 4.24–8.09 K/mm) at a constant growth rate (V = 7.64 μm/s) and with different growth rates (V = 2.24–133.33 μm/s) at a constant temperature gradient (G = 4.24 K/mm) by using a Bridgman type directional solidification apparatus. The microstructure of directional solidified Sn–3 wt% Cu alloy seems to be rod eutectic structure. The influence of the growth rate (V) and temperature gradient (G) on the rod spacing (λ) and undercooling (ΔT) were analysed. The values of $ λ^{2} $V, $ λ^{2} $G, ΔTλ, $ ΔTV^{−0.5} $ and $ ΔTG^{−0.5} $ were determined by using the Jackson–Hunt eutectic theory. The dependence of microhardness (HV) on the rod spacing (λ) was analyzed. According to present results, it has been found that the value of HV increases with the increasing the value of λ. © Springer Science+Business Media, LLC 2009 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 |
container_issue |
6 |
title_short |
Investigation of the effect of solidification processing parameters on the rod spacings and variation of microhardness with the rod spacing in the Sn–Cu hypereutectic alloy |
url |
https://doi.org/10.1007/s10854-009-9965-5 |
remote_bool |
false |
author2 |
Böyük, U. Engin, S. Kaya, H. Maraşlı, N. Keşlioğlu, K. Ülgen, A. |
author2Str |
Böyük, U. Engin, S. Kaya, H. Maraşlı, N. Keşlioğlu, K. Ülgen, A. |
ppnlink |
130863289 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10854-009-9965-5 |
up_date |
2024-07-04T03:30:36.503Z |
_version_ |
1803617657426018304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026258406</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503125404.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2009 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10854-009-9965-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026258406</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10854-009-9965-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Çadırlı, E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigation of the effect of solidification processing parameters on the rod spacings and variation of microhardness with the rod spacing in the Sn–Cu hypereutectic alloy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Sn–3 wt% Cu hypereutectic alloy was prepared in a graphite crucible under the vacuum atmosphere. The samples were directionally solidified upwards under argon atmosphere with different temperature gradients (G = 4.24–8.09 K/mm) at a constant growth rate (V = 7.64 μm/s) and with different growth rates (V = 2.24–133.33 μm/s) at a constant temperature gradient (G = 4.24 K/mm) by using a Bridgman type directional solidification apparatus. The microstructure of directional solidified Sn–3 wt% Cu alloy seems to be rod eutectic structure. The influence of the growth rate (V) and temperature gradient (G) on the rod spacing (λ) and undercooling (ΔT) were analysed. The values of $ λ^{2} $V, $ λ^{2} $G, ΔTλ, $ ΔTV^{−0.5} $ and $ ΔTG^{−0.5} $ were determined by using the Jackson–Hunt eutectic theory. The dependence of microhardness (HV) on the rod spacing (λ) was analyzed. According to present results, it has been found that the value of HV increases with the increasing the value of λ.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature Gradient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constant Growth Rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypereutectic Alloy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constant Temperature Gradient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Growth Rate Versus</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Böyük, U.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Engin, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaya, H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maraşlı, N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Keşlioğlu, K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ülgen, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science / Materials in electronics</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">21(2009), 6 vom: 28. Aug., Seite 608-618</subfield><subfield code="w">(DE-627)130863289</subfield><subfield code="w">(DE-600)1030929-9</subfield><subfield code="w">(DE-576)023106719</subfield><subfield code="x">0957-4522</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:6</subfield><subfield code="g">day:28</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:608-618</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10854-009-9965-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2009</subfield><subfield code="e">6</subfield><subfield code="b">28</subfield><subfield code="c">08</subfield><subfield code="h">608-618</subfield></datafield></record></collection>
|
score |
7.4020615 |