Impact of interfacial solubility on penetration of metals into dielectrics and the mechanism of failure
Abstract Copper solubility in low-k dielectrics has been shown to be a major factor in decreasing the useful lifetime of an interconnect. A number of groups have shown experimentally that increased surface oxygen concentration, increased moisture content in the dielectric, and an increase in interfa...
Ausführliche Beschreibung
Autor*in: |
Plawsky, Joel. L. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science / Materials in electronics - Springer US, 1990, 23(2011), 1 vom: 21. Mai, Seite 48-55 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2011 ; number:1 ; day:21 ; month:05 ; pages:48-55 |
Links: |
---|
DOI / URN: |
10.1007/s10854-011-0406-x |
---|
Katalog-ID: |
OLC2026262748 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026262748 | ||
003 | DE-627 | ||
005 | 20230503125429.0 | ||
007 | tu | ||
008 | 200820s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10854-011-0406-x |2 doi | |
035 | |a (DE-627)OLC2026262748 | ||
035 | |a (DE-He213)s10854-011-0406-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |a 670 |a 620 |q VZ |
100 | 1 | |a Plawsky, Joel. L. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Impact of interfacial solubility on penetration of metals into dielectrics and the mechanism of failure |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2011 | ||
520 | |a Abstract Copper solubility in low-k dielectrics has been shown to be a major factor in decreasing the useful lifetime of an interconnect. A number of groups have shown experimentally that increased surface oxygen concentration, increased moisture content in the dielectric, and an increase in interfacial copper concentration from chemical–mechanical polishing all contribute to accelerated failure. Here, we assumed that all these processes led to an increase in the solubility of metal at the $ SiO_{2} $/metal. We systematically varied the value of the interfacial solubility, $ C_{e} $ over a wide range and showed that the solubility strongly affects the distribution of copper and the local electric field within the dielectric. This changes the mechanism by which failure occurs from one where copper must penetrate all the way through the dielectric to one where copper penetration is limited to a thin layer near the surface. The solubility levels required to alter the failure mechanism, $ 10^{26} $–$ 10^{27} $ atoms/$ m^{3} $, are within the realm of possibility and have been reported in the context of fabricating Cu-$ SiO_{2} $ resistive switching elements for memory applications. | ||
650 | 4 | |a Applied Electric Field | |
650 | 4 | |a Local Electric Field | |
650 | 4 | |a Breakdown Strength | |
650 | 4 | |a Dielectric Breakdown | |
650 | 4 | |a Tunneling Route | |
700 | 1 | |a Gill, William N. |4 aut | |
700 | 1 | |a Achanta, Ravi S. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science / Materials in electronics |d Springer US, 1990 |g 23(2011), 1 vom: 21. Mai, Seite 48-55 |w (DE-627)130863289 |w (DE-600)1030929-9 |w (DE-576)023106719 |x 0957-4522 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2011 |g number:1 |g day:21 |g month:05 |g pages:48-55 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10854-011-0406-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 23 |j 2011 |e 1 |b 21 |c 05 |h 48-55 |
author_variant |
j l p jl jlp w n g wn wng r s a rs rsa |
---|---|
matchkey_str |
article:09574522:2011----::matfnefcaslbltopntainfeasnoilcrca |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s10854-011-0406-x doi (DE-627)OLC2026262748 (DE-He213)s10854-011-0406-x-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Plawsky, Joel. L. verfasserin aut Impact of interfacial solubility on penetration of metals into dielectrics and the mechanism of failure 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Copper solubility in low-k dielectrics has been shown to be a major factor in decreasing the useful lifetime of an interconnect. A number of groups have shown experimentally that increased surface oxygen concentration, increased moisture content in the dielectric, and an increase in interfacial copper concentration from chemical–mechanical polishing all contribute to accelerated failure. Here, we assumed that all these processes led to an increase in the solubility of metal at the $ SiO_{2} $/metal. We systematically varied the value of the interfacial solubility, $ C_{e} $ over a wide range and showed that the solubility strongly affects the distribution of copper and the local electric field within the dielectric. This changes the mechanism by which failure occurs from one where copper must penetrate all the way through the dielectric to one where copper penetration is limited to a thin layer near the surface. The solubility levels required to alter the failure mechanism, $ 10^{26} $–$ 10^{27} $ atoms/$ m^{3} $, are within the realm of possibility and have been reported in the context of fabricating Cu-$ SiO_{2} $ resistive switching elements for memory applications. Applied Electric Field Local Electric Field Breakdown Strength Dielectric Breakdown Tunneling Route Gill, William N. aut Achanta, Ravi S. aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 23(2011), 1 vom: 21. Mai, Seite 48-55 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:23 year:2011 number:1 day:21 month:05 pages:48-55 https://doi.org/10.1007/s10854-011-0406-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 23 2011 1 21 05 48-55 |
spelling |
10.1007/s10854-011-0406-x doi (DE-627)OLC2026262748 (DE-He213)s10854-011-0406-x-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Plawsky, Joel. L. verfasserin aut Impact of interfacial solubility on penetration of metals into dielectrics and the mechanism of failure 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Copper solubility in low-k dielectrics has been shown to be a major factor in decreasing the useful lifetime of an interconnect. A number of groups have shown experimentally that increased surface oxygen concentration, increased moisture content in the dielectric, and an increase in interfacial copper concentration from chemical–mechanical polishing all contribute to accelerated failure. Here, we assumed that all these processes led to an increase in the solubility of metal at the $ SiO_{2} $/metal. We systematically varied the value of the interfacial solubility, $ C_{e} $ over a wide range and showed that the solubility strongly affects the distribution of copper and the local electric field within the dielectric. This changes the mechanism by which failure occurs from one where copper must penetrate all the way through the dielectric to one where copper penetration is limited to a thin layer near the surface. The solubility levels required to alter the failure mechanism, $ 10^{26} $–$ 10^{27} $ atoms/$ m^{3} $, are within the realm of possibility and have been reported in the context of fabricating Cu-$ SiO_{2} $ resistive switching elements for memory applications. Applied Electric Field Local Electric Field Breakdown Strength Dielectric Breakdown Tunneling Route Gill, William N. aut Achanta, Ravi S. aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 23(2011), 1 vom: 21. Mai, Seite 48-55 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:23 year:2011 number:1 day:21 month:05 pages:48-55 https://doi.org/10.1007/s10854-011-0406-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 23 2011 1 21 05 48-55 |
allfields_unstemmed |
10.1007/s10854-011-0406-x doi (DE-627)OLC2026262748 (DE-He213)s10854-011-0406-x-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Plawsky, Joel. L. verfasserin aut Impact of interfacial solubility on penetration of metals into dielectrics and the mechanism of failure 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Copper solubility in low-k dielectrics has been shown to be a major factor in decreasing the useful lifetime of an interconnect. A number of groups have shown experimentally that increased surface oxygen concentration, increased moisture content in the dielectric, and an increase in interfacial copper concentration from chemical–mechanical polishing all contribute to accelerated failure. Here, we assumed that all these processes led to an increase in the solubility of metal at the $ SiO_{2} $/metal. We systematically varied the value of the interfacial solubility, $ C_{e} $ over a wide range and showed that the solubility strongly affects the distribution of copper and the local electric field within the dielectric. This changes the mechanism by which failure occurs from one where copper must penetrate all the way through the dielectric to one where copper penetration is limited to a thin layer near the surface. The solubility levels required to alter the failure mechanism, $ 10^{26} $–$ 10^{27} $ atoms/$ m^{3} $, are within the realm of possibility and have been reported in the context of fabricating Cu-$ SiO_{2} $ resistive switching elements for memory applications. Applied Electric Field Local Electric Field Breakdown Strength Dielectric Breakdown Tunneling Route Gill, William N. aut Achanta, Ravi S. aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 23(2011), 1 vom: 21. Mai, Seite 48-55 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:23 year:2011 number:1 day:21 month:05 pages:48-55 https://doi.org/10.1007/s10854-011-0406-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 23 2011 1 21 05 48-55 |
allfieldsGer |
10.1007/s10854-011-0406-x doi (DE-627)OLC2026262748 (DE-He213)s10854-011-0406-x-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Plawsky, Joel. L. verfasserin aut Impact of interfacial solubility on penetration of metals into dielectrics and the mechanism of failure 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Copper solubility in low-k dielectrics has been shown to be a major factor in decreasing the useful lifetime of an interconnect. A number of groups have shown experimentally that increased surface oxygen concentration, increased moisture content in the dielectric, and an increase in interfacial copper concentration from chemical–mechanical polishing all contribute to accelerated failure. Here, we assumed that all these processes led to an increase in the solubility of metal at the $ SiO_{2} $/metal. We systematically varied the value of the interfacial solubility, $ C_{e} $ over a wide range and showed that the solubility strongly affects the distribution of copper and the local electric field within the dielectric. This changes the mechanism by which failure occurs from one where copper must penetrate all the way through the dielectric to one where copper penetration is limited to a thin layer near the surface. The solubility levels required to alter the failure mechanism, $ 10^{26} $–$ 10^{27} $ atoms/$ m^{3} $, are within the realm of possibility and have been reported in the context of fabricating Cu-$ SiO_{2} $ resistive switching elements for memory applications. Applied Electric Field Local Electric Field Breakdown Strength Dielectric Breakdown Tunneling Route Gill, William N. aut Achanta, Ravi S. aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 23(2011), 1 vom: 21. Mai, Seite 48-55 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:23 year:2011 number:1 day:21 month:05 pages:48-55 https://doi.org/10.1007/s10854-011-0406-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 23 2011 1 21 05 48-55 |
allfieldsSound |
10.1007/s10854-011-0406-x doi (DE-627)OLC2026262748 (DE-He213)s10854-011-0406-x-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Plawsky, Joel. L. verfasserin aut Impact of interfacial solubility on penetration of metals into dielectrics and the mechanism of failure 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Copper solubility in low-k dielectrics has been shown to be a major factor in decreasing the useful lifetime of an interconnect. A number of groups have shown experimentally that increased surface oxygen concentration, increased moisture content in the dielectric, and an increase in interfacial copper concentration from chemical–mechanical polishing all contribute to accelerated failure. Here, we assumed that all these processes led to an increase in the solubility of metal at the $ SiO_{2} $/metal. We systematically varied the value of the interfacial solubility, $ C_{e} $ over a wide range and showed that the solubility strongly affects the distribution of copper and the local electric field within the dielectric. This changes the mechanism by which failure occurs from one where copper must penetrate all the way through the dielectric to one where copper penetration is limited to a thin layer near the surface. The solubility levels required to alter the failure mechanism, $ 10^{26} $–$ 10^{27} $ atoms/$ m^{3} $, are within the realm of possibility and have been reported in the context of fabricating Cu-$ SiO_{2} $ resistive switching elements for memory applications. Applied Electric Field Local Electric Field Breakdown Strength Dielectric Breakdown Tunneling Route Gill, William N. aut Achanta, Ravi S. aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 23(2011), 1 vom: 21. Mai, Seite 48-55 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:23 year:2011 number:1 day:21 month:05 pages:48-55 https://doi.org/10.1007/s10854-011-0406-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 23 2011 1 21 05 48-55 |
language |
English |
source |
Enthalten in Journal of materials science / Materials in electronics 23(2011), 1 vom: 21. Mai, Seite 48-55 volume:23 year:2011 number:1 day:21 month:05 pages:48-55 |
sourceStr |
Enthalten in Journal of materials science / Materials in electronics 23(2011), 1 vom: 21. Mai, Seite 48-55 volume:23 year:2011 number:1 day:21 month:05 pages:48-55 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Applied Electric Field Local Electric Field Breakdown Strength Dielectric Breakdown Tunneling Route |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science / Materials in electronics |
authorswithroles_txt_mv |
Plawsky, Joel. L. @@aut@@ Gill, William N. @@aut@@ Achanta, Ravi S. @@aut@@ |
publishDateDaySort_date |
2011-05-21T00:00:00Z |
hierarchy_top_id |
130863289 |
dewey-sort |
3600 |
id |
OLC2026262748 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026262748</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503125429.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10854-011-0406-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026262748</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10854-011-0406-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Plawsky, Joel. L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Impact of interfacial solubility on penetration of metals into dielectrics and the mechanism of failure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Copper solubility in low-k dielectrics has been shown to be a major factor in decreasing the useful lifetime of an interconnect. A number of groups have shown experimentally that increased surface oxygen concentration, increased moisture content in the dielectric, and an increase in interfacial copper concentration from chemical–mechanical polishing all contribute to accelerated failure. Here, we assumed that all these processes led to an increase in the solubility of metal at the $ SiO_{2} $/metal. We systematically varied the value of the interfacial solubility, $ C_{e} $ over a wide range and showed that the solubility strongly affects the distribution of copper and the local electric field within the dielectric. This changes the mechanism by which failure occurs from one where copper must penetrate all the way through the dielectric to one where copper penetration is limited to a thin layer near the surface. The solubility levels required to alter the failure mechanism, $ 10^{26} $–$ 10^{27} $ atoms/$ m^{3} $, are within the realm of possibility and have been reported in the context of fabricating Cu-$ SiO_{2} $ resistive switching elements for memory applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applied Electric Field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local Electric Field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breakdown Strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dielectric Breakdown</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tunneling Route</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gill, William N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Achanta, Ravi S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science / Materials in electronics</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">23(2011), 1 vom: 21. Mai, Seite 48-55</subfield><subfield code="w">(DE-627)130863289</subfield><subfield code="w">(DE-600)1030929-9</subfield><subfield code="w">(DE-576)023106719</subfield><subfield code="x">0957-4522</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:48-55</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10854-011-0406-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2011</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">05</subfield><subfield code="h">48-55</subfield></datafield></record></collection>
|
author |
Plawsky, Joel. L. |
spellingShingle |
Plawsky, Joel. L. ddc 600 misc Applied Electric Field misc Local Electric Field misc Breakdown Strength misc Dielectric Breakdown misc Tunneling Route Impact of interfacial solubility on penetration of metals into dielectrics and the mechanism of failure |
authorStr |
Plawsky, Joel. L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130863289 |
format |
Article |
dewey-ones |
600 - Technology 670 - Manufacturing 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0957-4522 |
topic_title |
600 670 620 VZ Impact of interfacial solubility on penetration of metals into dielectrics and the mechanism of failure Applied Electric Field Local Electric Field Breakdown Strength Dielectric Breakdown Tunneling Route |
topic |
ddc 600 misc Applied Electric Field misc Local Electric Field misc Breakdown Strength misc Dielectric Breakdown misc Tunneling Route |
topic_unstemmed |
ddc 600 misc Applied Electric Field misc Local Electric Field misc Breakdown Strength misc Dielectric Breakdown misc Tunneling Route |
topic_browse |
ddc 600 misc Applied Electric Field misc Local Electric Field misc Breakdown Strength misc Dielectric Breakdown misc Tunneling Route |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science / Materials in electronics |
hierarchy_parent_id |
130863289 |
dewey-tens |
600 - Technology 670 - Manufacturing 620 - Engineering |
hierarchy_top_title |
Journal of materials science / Materials in electronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 |
title |
Impact of interfacial solubility on penetration of metals into dielectrics and the mechanism of failure |
ctrlnum |
(DE-627)OLC2026262748 (DE-He213)s10854-011-0406-x-p |
title_full |
Impact of interfacial solubility on penetration of metals into dielectrics and the mechanism of failure |
author_sort |
Plawsky, Joel. L. |
journal |
Journal of materials science / Materials in electronics |
journalStr |
Journal of materials science / Materials in electronics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
48 |
author_browse |
Plawsky, Joel. L. Gill, William N. Achanta, Ravi S. |
container_volume |
23 |
class |
600 670 620 VZ |
format_se |
Aufsätze |
author-letter |
Plawsky, Joel. L. |
doi_str_mv |
10.1007/s10854-011-0406-x |
dewey-full |
600 670 620 |
title_sort |
impact of interfacial solubility on penetration of metals into dielectrics and the mechanism of failure |
title_auth |
Impact of interfacial solubility on penetration of metals into dielectrics and the mechanism of failure |
abstract |
Abstract Copper solubility in low-k dielectrics has been shown to be a major factor in decreasing the useful lifetime of an interconnect. A number of groups have shown experimentally that increased surface oxygen concentration, increased moisture content in the dielectric, and an increase in interfacial copper concentration from chemical–mechanical polishing all contribute to accelerated failure. Here, we assumed that all these processes led to an increase in the solubility of metal at the $ SiO_{2} $/metal. We systematically varied the value of the interfacial solubility, $ C_{e} $ over a wide range and showed that the solubility strongly affects the distribution of copper and the local electric field within the dielectric. This changes the mechanism by which failure occurs from one where copper must penetrate all the way through the dielectric to one where copper penetration is limited to a thin layer near the surface. The solubility levels required to alter the failure mechanism, $ 10^{26} $–$ 10^{27} $ atoms/$ m^{3} $, are within the realm of possibility and have been reported in the context of fabricating Cu-$ SiO_{2} $ resistive switching elements for memory applications. © Springer Science+Business Media, LLC 2011 |
abstractGer |
Abstract Copper solubility in low-k dielectrics has been shown to be a major factor in decreasing the useful lifetime of an interconnect. A number of groups have shown experimentally that increased surface oxygen concentration, increased moisture content in the dielectric, and an increase in interfacial copper concentration from chemical–mechanical polishing all contribute to accelerated failure. Here, we assumed that all these processes led to an increase in the solubility of metal at the $ SiO_{2} $/metal. We systematically varied the value of the interfacial solubility, $ C_{e} $ over a wide range and showed that the solubility strongly affects the distribution of copper and the local electric field within the dielectric. This changes the mechanism by which failure occurs from one where copper must penetrate all the way through the dielectric to one where copper penetration is limited to a thin layer near the surface. The solubility levels required to alter the failure mechanism, $ 10^{26} $–$ 10^{27} $ atoms/$ m^{3} $, are within the realm of possibility and have been reported in the context of fabricating Cu-$ SiO_{2} $ resistive switching elements for memory applications. © Springer Science+Business Media, LLC 2011 |
abstract_unstemmed |
Abstract Copper solubility in low-k dielectrics has been shown to be a major factor in decreasing the useful lifetime of an interconnect. A number of groups have shown experimentally that increased surface oxygen concentration, increased moisture content in the dielectric, and an increase in interfacial copper concentration from chemical–mechanical polishing all contribute to accelerated failure. Here, we assumed that all these processes led to an increase in the solubility of metal at the $ SiO_{2} $/metal. We systematically varied the value of the interfacial solubility, $ C_{e} $ over a wide range and showed that the solubility strongly affects the distribution of copper and the local electric field within the dielectric. This changes the mechanism by which failure occurs from one where copper must penetrate all the way through the dielectric to one where copper penetration is limited to a thin layer near the surface. The solubility levels required to alter the failure mechanism, $ 10^{26} $–$ 10^{27} $ atoms/$ m^{3} $, are within the realm of possibility and have been reported in the context of fabricating Cu-$ SiO_{2} $ resistive switching elements for memory applications. © Springer Science+Business Media, LLC 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_21 GBV_ILN_23 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 |
container_issue |
1 |
title_short |
Impact of interfacial solubility on penetration of metals into dielectrics and the mechanism of failure |
url |
https://doi.org/10.1007/s10854-011-0406-x |
remote_bool |
false |
author2 |
Gill, William N. Achanta, Ravi S. |
author2Str |
Gill, William N. Achanta, Ravi S. |
ppnlink |
130863289 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10854-011-0406-x |
up_date |
2024-07-04T03:31:17.491Z |
_version_ |
1803617700405051392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026262748</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503125429.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10854-011-0406-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026262748</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10854-011-0406-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Plawsky, Joel. L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Impact of interfacial solubility on penetration of metals into dielectrics and the mechanism of failure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Copper solubility in low-k dielectrics has been shown to be a major factor in decreasing the useful lifetime of an interconnect. A number of groups have shown experimentally that increased surface oxygen concentration, increased moisture content in the dielectric, and an increase in interfacial copper concentration from chemical–mechanical polishing all contribute to accelerated failure. Here, we assumed that all these processes led to an increase in the solubility of metal at the $ SiO_{2} $/metal. We systematically varied the value of the interfacial solubility, $ C_{e} $ over a wide range and showed that the solubility strongly affects the distribution of copper and the local electric field within the dielectric. This changes the mechanism by which failure occurs from one where copper must penetrate all the way through the dielectric to one where copper penetration is limited to a thin layer near the surface. The solubility levels required to alter the failure mechanism, $ 10^{26} $–$ 10^{27} $ atoms/$ m^{3} $, are within the realm of possibility and have been reported in the context of fabricating Cu-$ SiO_{2} $ resistive switching elements for memory applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applied Electric Field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local Electric Field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breakdown Strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dielectric Breakdown</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tunneling Route</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gill, William N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Achanta, Ravi S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science / Materials in electronics</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">23(2011), 1 vom: 21. Mai, Seite 48-55</subfield><subfield code="w">(DE-627)130863289</subfield><subfield code="w">(DE-600)1030929-9</subfield><subfield code="w">(DE-576)023106719</subfield><subfield code="x">0957-4522</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:48-55</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10854-011-0406-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2011</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">05</subfield><subfield code="h">48-55</subfield></datafield></record></collection>
|
score |
7.4016895 |