High-temperature phase transitions in a quaternary lead based perovskite structured materials with negative temperature coefficient of resistance (NTCR) behavior
Abstract Impedance spectroscopy measurements were carried out on lead based, 0.25 ($ PbZr_{0.52} $$ Ti_{0.48} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Ta_{0.50} $$ O_{3} $) + 0.25 ($ PbFe_{0.67} $$ W_{0.33} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Nb_{0.50} $$ O_{3} $) (PZT–PFT–PFW–PFN) solid solution over...
Ausführliche Beschreibung
Autor*in: |
Martínez, Ricardo [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials science / Materials in electronics - Springer US, 1990, 24(2013), 8 vom: 13. März, Seite 2790-2795 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2013 ; number:8 ; day:13 ; month:03 ; pages:2790-2795 |
Links: |
---|
DOI / URN: |
10.1007/s10854-013-1172-8 |
---|
Katalog-ID: |
OLC2026270198 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026270198 | ||
003 | DE-627 | ||
005 | 20230503125538.0 | ||
007 | tu | ||
008 | 200820s2013 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10854-013-1172-8 |2 doi | |
035 | |a (DE-627)OLC2026270198 | ||
035 | |a (DE-He213)s10854-013-1172-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |a 670 |a 620 |q VZ |
100 | 1 | |a Martínez, Ricardo |e verfasserin |4 aut | |
245 | 1 | 0 | |a High-temperature phase transitions in a quaternary lead based perovskite structured materials with negative temperature coefficient of resistance (NTCR) behavior |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2013 | ||
520 | |a Abstract Impedance spectroscopy measurements were carried out on lead based, 0.25 ($ PbZr_{0.52} $$ Ti_{0.48} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Ta_{0.50} $$ O_{3} $) + 0.25 ($ PbFe_{0.67} $$ W_{0.33} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Nb_{0.50} $$ O_{3} $) (PZT–PFT–PFW–PFN) solid solution over a wide range of temperatures (400–650 K) and frequencies (100 Hz–1 MHz). Impedance data showed the presence of both grains and grain boundaries effects in the electrical transport properties of quaternary. The role of the grains and grain boundaries to the impedance become more prominent around the phase transition (~420 K). Two thermally activated processes were found from the temperature dependences of the relaxation time (τ). Activation energies calculated from relaxation times obtained from imaginary part of impedance were estimated ~1.21 and ~1.84 eV over 400–490 K and 490–650 K respectively. The sum of the activation energies for the grain and grain boundary resistances is basically of the same order of magnitude that is from the impedance at high temperatures. A constant phase element is used in the equivalent electrical circuits for fitting of experimental impedance data. The nature of variation of the grain and grain boundary resistance with temperature suggested negative temperature coefficient of resistance behavior. | ||
650 | 4 | |a Perovskite | |
650 | 4 | |a Oxygen Vacancy | |
650 | 4 | |a Constant Phase Element | |
650 | 4 | |a Boundary Resistance | |
650 | 4 | |a Electrical Modulus | |
700 | 1 | |a Puli, Venkata Sreenivas |4 aut | |
700 | 1 | |a Katiyar, Ram S. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials science / Materials in electronics |d Springer US, 1990 |g 24(2013), 8 vom: 13. März, Seite 2790-2795 |w (DE-627)130863289 |w (DE-600)1030929-9 |w (DE-576)023106719 |x 0957-4522 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2013 |g number:8 |g day:13 |g month:03 |g pages:2790-2795 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10854-013-1172-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 24 |j 2013 |e 8 |b 13 |c 03 |h 2790-2795 |
author_variant |
r m rm v s p vs vsp r s k rs rsk |
---|---|
matchkey_str |
article:09574522:2013----::iheprtrpaerniiniautrayedaeprvktsrcuemtrasiheaieeprtr |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1007/s10854-013-1172-8 doi (DE-627)OLC2026270198 (DE-He213)s10854-013-1172-8-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Martínez, Ricardo verfasserin aut High-temperature phase transitions in a quaternary lead based perovskite structured materials with negative temperature coefficient of resistance (NTCR) behavior 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract Impedance spectroscopy measurements were carried out on lead based, 0.25 ($ PbZr_{0.52} $$ Ti_{0.48} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Ta_{0.50} $$ O_{3} $) + 0.25 ($ PbFe_{0.67} $$ W_{0.33} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Nb_{0.50} $$ O_{3} $) (PZT–PFT–PFW–PFN) solid solution over a wide range of temperatures (400–650 K) and frequencies (100 Hz–1 MHz). Impedance data showed the presence of both grains and grain boundaries effects in the electrical transport properties of quaternary. The role of the grains and grain boundaries to the impedance become more prominent around the phase transition (~420 K). Two thermally activated processes were found from the temperature dependences of the relaxation time (τ). Activation energies calculated from relaxation times obtained from imaginary part of impedance were estimated ~1.21 and ~1.84 eV over 400–490 K and 490–650 K respectively. The sum of the activation energies for the grain and grain boundary resistances is basically of the same order of magnitude that is from the impedance at high temperatures. A constant phase element is used in the equivalent electrical circuits for fitting of experimental impedance data. The nature of variation of the grain and grain boundary resistance with temperature suggested negative temperature coefficient of resistance behavior. Perovskite Oxygen Vacancy Constant Phase Element Boundary Resistance Electrical Modulus Puli, Venkata Sreenivas aut Katiyar, Ram S. aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 24(2013), 8 vom: 13. März, Seite 2790-2795 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:24 year:2013 number:8 day:13 month:03 pages:2790-2795 https://doi.org/10.1007/s10854-013-1172-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 24 2013 8 13 03 2790-2795 |
spelling |
10.1007/s10854-013-1172-8 doi (DE-627)OLC2026270198 (DE-He213)s10854-013-1172-8-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Martínez, Ricardo verfasserin aut High-temperature phase transitions in a quaternary lead based perovskite structured materials with negative temperature coefficient of resistance (NTCR) behavior 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract Impedance spectroscopy measurements were carried out on lead based, 0.25 ($ PbZr_{0.52} $$ Ti_{0.48} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Ta_{0.50} $$ O_{3} $) + 0.25 ($ PbFe_{0.67} $$ W_{0.33} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Nb_{0.50} $$ O_{3} $) (PZT–PFT–PFW–PFN) solid solution over a wide range of temperatures (400–650 K) and frequencies (100 Hz–1 MHz). Impedance data showed the presence of both grains and grain boundaries effects in the electrical transport properties of quaternary. The role of the grains and grain boundaries to the impedance become more prominent around the phase transition (~420 K). Two thermally activated processes were found from the temperature dependences of the relaxation time (τ). Activation energies calculated from relaxation times obtained from imaginary part of impedance were estimated ~1.21 and ~1.84 eV over 400–490 K and 490–650 K respectively. The sum of the activation energies for the grain and grain boundary resistances is basically of the same order of magnitude that is from the impedance at high temperatures. A constant phase element is used in the equivalent electrical circuits for fitting of experimental impedance data. The nature of variation of the grain and grain boundary resistance with temperature suggested negative temperature coefficient of resistance behavior. Perovskite Oxygen Vacancy Constant Phase Element Boundary Resistance Electrical Modulus Puli, Venkata Sreenivas aut Katiyar, Ram S. aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 24(2013), 8 vom: 13. März, Seite 2790-2795 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:24 year:2013 number:8 day:13 month:03 pages:2790-2795 https://doi.org/10.1007/s10854-013-1172-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 24 2013 8 13 03 2790-2795 |
allfields_unstemmed |
10.1007/s10854-013-1172-8 doi (DE-627)OLC2026270198 (DE-He213)s10854-013-1172-8-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Martínez, Ricardo verfasserin aut High-temperature phase transitions in a quaternary lead based perovskite structured materials with negative temperature coefficient of resistance (NTCR) behavior 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract Impedance spectroscopy measurements were carried out on lead based, 0.25 ($ PbZr_{0.52} $$ Ti_{0.48} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Ta_{0.50} $$ O_{3} $) + 0.25 ($ PbFe_{0.67} $$ W_{0.33} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Nb_{0.50} $$ O_{3} $) (PZT–PFT–PFW–PFN) solid solution over a wide range of temperatures (400–650 K) and frequencies (100 Hz–1 MHz). Impedance data showed the presence of both grains and grain boundaries effects in the electrical transport properties of quaternary. The role of the grains and grain boundaries to the impedance become more prominent around the phase transition (~420 K). Two thermally activated processes were found from the temperature dependences of the relaxation time (τ). Activation energies calculated from relaxation times obtained from imaginary part of impedance were estimated ~1.21 and ~1.84 eV over 400–490 K and 490–650 K respectively. The sum of the activation energies for the grain and grain boundary resistances is basically of the same order of magnitude that is from the impedance at high temperatures. A constant phase element is used in the equivalent electrical circuits for fitting of experimental impedance data. The nature of variation of the grain and grain boundary resistance with temperature suggested negative temperature coefficient of resistance behavior. Perovskite Oxygen Vacancy Constant Phase Element Boundary Resistance Electrical Modulus Puli, Venkata Sreenivas aut Katiyar, Ram S. aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 24(2013), 8 vom: 13. März, Seite 2790-2795 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:24 year:2013 number:8 day:13 month:03 pages:2790-2795 https://doi.org/10.1007/s10854-013-1172-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 24 2013 8 13 03 2790-2795 |
allfieldsGer |
10.1007/s10854-013-1172-8 doi (DE-627)OLC2026270198 (DE-He213)s10854-013-1172-8-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Martínez, Ricardo verfasserin aut High-temperature phase transitions in a quaternary lead based perovskite structured materials with negative temperature coefficient of resistance (NTCR) behavior 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract Impedance spectroscopy measurements were carried out on lead based, 0.25 ($ PbZr_{0.52} $$ Ti_{0.48} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Ta_{0.50} $$ O_{3} $) + 0.25 ($ PbFe_{0.67} $$ W_{0.33} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Nb_{0.50} $$ O_{3} $) (PZT–PFT–PFW–PFN) solid solution over a wide range of temperatures (400–650 K) and frequencies (100 Hz–1 MHz). Impedance data showed the presence of both grains and grain boundaries effects in the electrical transport properties of quaternary. The role of the grains and grain boundaries to the impedance become more prominent around the phase transition (~420 K). Two thermally activated processes were found from the temperature dependences of the relaxation time (τ). Activation energies calculated from relaxation times obtained from imaginary part of impedance were estimated ~1.21 and ~1.84 eV over 400–490 K and 490–650 K respectively. The sum of the activation energies for the grain and grain boundary resistances is basically of the same order of magnitude that is from the impedance at high temperatures. A constant phase element is used in the equivalent electrical circuits for fitting of experimental impedance data. The nature of variation of the grain and grain boundary resistance with temperature suggested negative temperature coefficient of resistance behavior. Perovskite Oxygen Vacancy Constant Phase Element Boundary Resistance Electrical Modulus Puli, Venkata Sreenivas aut Katiyar, Ram S. aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 24(2013), 8 vom: 13. März, Seite 2790-2795 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:24 year:2013 number:8 day:13 month:03 pages:2790-2795 https://doi.org/10.1007/s10854-013-1172-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 24 2013 8 13 03 2790-2795 |
allfieldsSound |
10.1007/s10854-013-1172-8 doi (DE-627)OLC2026270198 (DE-He213)s10854-013-1172-8-p DE-627 ger DE-627 rakwb eng 600 670 620 VZ Martínez, Ricardo verfasserin aut High-temperature phase transitions in a quaternary lead based perovskite structured materials with negative temperature coefficient of resistance (NTCR) behavior 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract Impedance spectroscopy measurements were carried out on lead based, 0.25 ($ PbZr_{0.52} $$ Ti_{0.48} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Ta_{0.50} $$ O_{3} $) + 0.25 ($ PbFe_{0.67} $$ W_{0.33} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Nb_{0.50} $$ O_{3} $) (PZT–PFT–PFW–PFN) solid solution over a wide range of temperatures (400–650 K) and frequencies (100 Hz–1 MHz). Impedance data showed the presence of both grains and grain boundaries effects in the electrical transport properties of quaternary. The role of the grains and grain boundaries to the impedance become more prominent around the phase transition (~420 K). Two thermally activated processes were found from the temperature dependences of the relaxation time (τ). Activation energies calculated from relaxation times obtained from imaginary part of impedance were estimated ~1.21 and ~1.84 eV over 400–490 K and 490–650 K respectively. The sum of the activation energies for the grain and grain boundary resistances is basically of the same order of magnitude that is from the impedance at high temperatures. A constant phase element is used in the equivalent electrical circuits for fitting of experimental impedance data. The nature of variation of the grain and grain boundary resistance with temperature suggested negative temperature coefficient of resistance behavior. Perovskite Oxygen Vacancy Constant Phase Element Boundary Resistance Electrical Modulus Puli, Venkata Sreenivas aut Katiyar, Ram S. aut Enthalten in Journal of materials science / Materials in electronics Springer US, 1990 24(2013), 8 vom: 13. März, Seite 2790-2795 (DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 0957-4522 nnns volume:24 year:2013 number:8 day:13 month:03 pages:2790-2795 https://doi.org/10.1007/s10854-013-1172-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 AR 24 2013 8 13 03 2790-2795 |
language |
English |
source |
Enthalten in Journal of materials science / Materials in electronics 24(2013), 8 vom: 13. März, Seite 2790-2795 volume:24 year:2013 number:8 day:13 month:03 pages:2790-2795 |
sourceStr |
Enthalten in Journal of materials science / Materials in electronics 24(2013), 8 vom: 13. März, Seite 2790-2795 volume:24 year:2013 number:8 day:13 month:03 pages:2790-2795 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Perovskite Oxygen Vacancy Constant Phase Element Boundary Resistance Electrical Modulus |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Journal of materials science / Materials in electronics |
authorswithroles_txt_mv |
Martínez, Ricardo @@aut@@ Puli, Venkata Sreenivas @@aut@@ Katiyar, Ram S. @@aut@@ |
publishDateDaySort_date |
2013-03-13T00:00:00Z |
hierarchy_top_id |
130863289 |
dewey-sort |
3600 |
id |
OLC2026270198 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026270198</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503125538.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10854-013-1172-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026270198</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10854-013-1172-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Martínez, Ricardo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-temperature phase transitions in a quaternary lead based perovskite structured materials with negative temperature coefficient of resistance (NTCR) behavior</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Impedance spectroscopy measurements were carried out on lead based, 0.25 ($ PbZr_{0.52} $$ Ti_{0.48} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Ta_{0.50} $$ O_{3} $) + 0.25 ($ PbFe_{0.67} $$ W_{0.33} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Nb_{0.50} $$ O_{3} $) (PZT–PFT–PFW–PFN) solid solution over a wide range of temperatures (400–650 K) and frequencies (100 Hz–1 MHz). Impedance data showed the presence of both grains and grain boundaries effects in the electrical transport properties of quaternary. The role of the grains and grain boundaries to the impedance become more prominent around the phase transition (~420 K). Two thermally activated processes were found from the temperature dependences of the relaxation time (τ). Activation energies calculated from relaxation times obtained from imaginary part of impedance were estimated ~1.21 and ~1.84 eV over 400–490 K and 490–650 K respectively. The sum of the activation energies for the grain and grain boundary resistances is basically of the same order of magnitude that is from the impedance at high temperatures. A constant phase element is used in the equivalent electrical circuits for fitting of experimental impedance data. The nature of variation of the grain and grain boundary resistance with temperature suggested negative temperature coefficient of resistance behavior.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perovskite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxygen Vacancy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constant Phase Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary Resistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Modulus</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Puli, Venkata Sreenivas</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Katiyar, Ram S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science / Materials in electronics</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">24(2013), 8 vom: 13. März, Seite 2790-2795</subfield><subfield code="w">(DE-627)130863289</subfield><subfield code="w">(DE-600)1030929-9</subfield><subfield code="w">(DE-576)023106719</subfield><subfield code="x">0957-4522</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:8</subfield><subfield code="g">day:13</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:2790-2795</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10854-013-1172-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2013</subfield><subfield code="e">8</subfield><subfield code="b">13</subfield><subfield code="c">03</subfield><subfield code="h">2790-2795</subfield></datafield></record></collection>
|
author |
Martínez, Ricardo |
spellingShingle |
Martínez, Ricardo ddc 600 misc Perovskite misc Oxygen Vacancy misc Constant Phase Element misc Boundary Resistance misc Electrical Modulus High-temperature phase transitions in a quaternary lead based perovskite structured materials with negative temperature coefficient of resistance (NTCR) behavior |
authorStr |
Martínez, Ricardo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130863289 |
format |
Article |
dewey-ones |
600 - Technology 670 - Manufacturing 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0957-4522 |
topic_title |
600 670 620 VZ High-temperature phase transitions in a quaternary lead based perovskite structured materials with negative temperature coefficient of resistance (NTCR) behavior Perovskite Oxygen Vacancy Constant Phase Element Boundary Resistance Electrical Modulus |
topic |
ddc 600 misc Perovskite misc Oxygen Vacancy misc Constant Phase Element misc Boundary Resistance misc Electrical Modulus |
topic_unstemmed |
ddc 600 misc Perovskite misc Oxygen Vacancy misc Constant Phase Element misc Boundary Resistance misc Electrical Modulus |
topic_browse |
ddc 600 misc Perovskite misc Oxygen Vacancy misc Constant Phase Element misc Boundary Resistance misc Electrical Modulus |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials science / Materials in electronics |
hierarchy_parent_id |
130863289 |
dewey-tens |
600 - Technology 670 - Manufacturing 620 - Engineering |
hierarchy_top_title |
Journal of materials science / Materials in electronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130863289 (DE-600)1030929-9 (DE-576)023106719 |
title |
High-temperature phase transitions in a quaternary lead based perovskite structured materials with negative temperature coefficient of resistance (NTCR) behavior |
ctrlnum |
(DE-627)OLC2026270198 (DE-He213)s10854-013-1172-8-p |
title_full |
High-temperature phase transitions in a quaternary lead based perovskite structured materials with negative temperature coefficient of resistance (NTCR) behavior |
author_sort |
Martínez, Ricardo |
journal |
Journal of materials science / Materials in electronics |
journalStr |
Journal of materials science / Materials in electronics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
2790 |
author_browse |
Martínez, Ricardo Puli, Venkata Sreenivas Katiyar, Ram S. |
container_volume |
24 |
class |
600 670 620 VZ |
format_se |
Aufsätze |
author-letter |
Martínez, Ricardo |
doi_str_mv |
10.1007/s10854-013-1172-8 |
dewey-full |
600 670 620 |
title_sort |
high-temperature phase transitions in a quaternary lead based perovskite structured materials with negative temperature coefficient of resistance (ntcr) behavior |
title_auth |
High-temperature phase transitions in a quaternary lead based perovskite structured materials with negative temperature coefficient of resistance (NTCR) behavior |
abstract |
Abstract Impedance spectroscopy measurements were carried out on lead based, 0.25 ($ PbZr_{0.52} $$ Ti_{0.48} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Ta_{0.50} $$ O_{3} $) + 0.25 ($ PbFe_{0.67} $$ W_{0.33} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Nb_{0.50} $$ O_{3} $) (PZT–PFT–PFW–PFN) solid solution over a wide range of temperatures (400–650 K) and frequencies (100 Hz–1 MHz). Impedance data showed the presence of both grains and grain boundaries effects in the electrical transport properties of quaternary. The role of the grains and grain boundaries to the impedance become more prominent around the phase transition (~420 K). Two thermally activated processes were found from the temperature dependences of the relaxation time (τ). Activation energies calculated from relaxation times obtained from imaginary part of impedance were estimated ~1.21 and ~1.84 eV over 400–490 K and 490–650 K respectively. The sum of the activation energies for the grain and grain boundary resistances is basically of the same order of magnitude that is from the impedance at high temperatures. A constant phase element is used in the equivalent electrical circuits for fitting of experimental impedance data. The nature of variation of the grain and grain boundary resistance with temperature suggested negative temperature coefficient of resistance behavior. © Springer Science+Business Media New York 2013 |
abstractGer |
Abstract Impedance spectroscopy measurements were carried out on lead based, 0.25 ($ PbZr_{0.52} $$ Ti_{0.48} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Ta_{0.50} $$ O_{3} $) + 0.25 ($ PbFe_{0.67} $$ W_{0.33} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Nb_{0.50} $$ O_{3} $) (PZT–PFT–PFW–PFN) solid solution over a wide range of temperatures (400–650 K) and frequencies (100 Hz–1 MHz). Impedance data showed the presence of both grains and grain boundaries effects in the electrical transport properties of quaternary. The role of the grains and grain boundaries to the impedance become more prominent around the phase transition (~420 K). Two thermally activated processes were found from the temperature dependences of the relaxation time (τ). Activation energies calculated from relaxation times obtained from imaginary part of impedance were estimated ~1.21 and ~1.84 eV over 400–490 K and 490–650 K respectively. The sum of the activation energies for the grain and grain boundary resistances is basically of the same order of magnitude that is from the impedance at high temperatures. A constant phase element is used in the equivalent electrical circuits for fitting of experimental impedance data. The nature of variation of the grain and grain boundary resistance with temperature suggested negative temperature coefficient of resistance behavior. © Springer Science+Business Media New York 2013 |
abstract_unstemmed |
Abstract Impedance spectroscopy measurements were carried out on lead based, 0.25 ($ PbZr_{0.52} $$ Ti_{0.48} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Ta_{0.50} $$ O_{3} $) + 0.25 ($ PbFe_{0.67} $$ W_{0.33} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Nb_{0.50} $$ O_{3} $) (PZT–PFT–PFW–PFN) solid solution over a wide range of temperatures (400–650 K) and frequencies (100 Hz–1 MHz). Impedance data showed the presence of both grains and grain boundaries effects in the electrical transport properties of quaternary. The role of the grains and grain boundaries to the impedance become more prominent around the phase transition (~420 K). Two thermally activated processes were found from the temperature dependences of the relaxation time (τ). Activation energies calculated from relaxation times obtained from imaginary part of impedance were estimated ~1.21 and ~1.84 eV over 400–490 K and 490–650 K respectively. The sum of the activation energies for the grain and grain boundary resistances is basically of the same order of magnitude that is from the impedance at high temperatures. A constant phase element is used in the equivalent electrical circuits for fitting of experimental impedance data. The nature of variation of the grain and grain boundary resistance with temperature suggested negative temperature coefficient of resistance behavior. © Springer Science+Business Media New York 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_30 GBV_ILN_32 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2015 GBV_ILN_4046 GBV_ILN_4305 GBV_ILN_4323 |
container_issue |
8 |
title_short |
High-temperature phase transitions in a quaternary lead based perovskite structured materials with negative temperature coefficient of resistance (NTCR) behavior |
url |
https://doi.org/10.1007/s10854-013-1172-8 |
remote_bool |
false |
author2 |
Puli, Venkata Sreenivas Katiyar, Ram S. |
author2Str |
Puli, Venkata Sreenivas Katiyar, Ram S. |
ppnlink |
130863289 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10854-013-1172-8 |
up_date |
2024-07-04T03:32:29.222Z |
_version_ |
1803617775627796480 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026270198</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503125538.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10854-013-1172-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026270198</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10854-013-1172-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Martínez, Ricardo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-temperature phase transitions in a quaternary lead based perovskite structured materials with negative temperature coefficient of resistance (NTCR) behavior</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Impedance spectroscopy measurements were carried out on lead based, 0.25 ($ PbZr_{0.52} $$ Ti_{0.48} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Ta_{0.50} $$ O_{3} $) + 0.25 ($ PbFe_{0.67} $$ W_{0.33} $$ O_{3} $) + 0.25 ($ PbFe_{0.50} $$ Nb_{0.50} $$ O_{3} $) (PZT–PFT–PFW–PFN) solid solution over a wide range of temperatures (400–650 K) and frequencies (100 Hz–1 MHz). Impedance data showed the presence of both grains and grain boundaries effects in the electrical transport properties of quaternary. The role of the grains and grain boundaries to the impedance become more prominent around the phase transition (~420 K). Two thermally activated processes were found from the temperature dependences of the relaxation time (τ). Activation energies calculated from relaxation times obtained from imaginary part of impedance were estimated ~1.21 and ~1.84 eV over 400–490 K and 490–650 K respectively. The sum of the activation energies for the grain and grain boundary resistances is basically of the same order of magnitude that is from the impedance at high temperatures. A constant phase element is used in the equivalent electrical circuits for fitting of experimental impedance data. The nature of variation of the grain and grain boundary resistance with temperature suggested negative temperature coefficient of resistance behavior.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perovskite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxygen Vacancy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constant Phase Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary Resistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Modulus</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Puli, Venkata Sreenivas</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Katiyar, Ram S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials science / Materials in electronics</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">24(2013), 8 vom: 13. März, Seite 2790-2795</subfield><subfield code="w">(DE-627)130863289</subfield><subfield code="w">(DE-600)1030929-9</subfield><subfield code="w">(DE-576)023106719</subfield><subfield code="x">0957-4522</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:8</subfield><subfield code="g">day:13</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:2790-2795</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10854-013-1172-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2013</subfield><subfield code="e">8</subfield><subfield code="b">13</subfield><subfield code="c">03</subfield><subfield code="h">2790-2795</subfield></datafield></record></collection>
|
score |
7.402915 |