Family of Projected Descent Methods for Optimization Problems with Simple Bounds
Abstract This paper presents a family of projected descent direction algorithms with inexact line search for solving large-scale minimization problems subject to simple bounds on the decision variables. The global convergence of algorithms in this family is ensured by conditions on the descent direc...
Ausführliche Beschreibung
Autor*in: |
Schwartz, A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1997 |
---|
Systematik: |
|
---|
Anmerkung: |
© Plenum Publishing Corporation 1997 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of optimization theory and applications - Kluwer Academic Publishers-Plenum Publishers, 1967, 92(1997), 1 vom: Jan., Seite 1-31 |
---|---|
Übergeordnetes Werk: |
volume:92 ; year:1997 ; number:1 ; month:01 ; pages:1-31 |
Links: |
---|
DOI / URN: |
10.1023/A:1022690711754 |
---|
Katalog-ID: |
OLC2026468702 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026468702 | ||
003 | DE-627 | ||
005 | 20230503154931.0 | ||
007 | tu | ||
008 | 200819s1997 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/A:1022690711754 |2 doi | |
035 | |a (DE-627)OLC2026468702 | ||
035 | |a (DE-He213)A:1022690711754-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 330 |a 510 |a 000 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 6420 |q VZ |2 rvk | ||
084 | |a SA 6420 |q VZ |2 rvk | ||
100 | 1 | |a Schwartz, A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Family of Projected Descent Methods for Optimization Problems with Simple Bounds |
264 | 1 | |c 1997 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Plenum Publishing Corporation 1997 | ||
520 | |a Abstract This paper presents a family of projected descent direction algorithms with inexact line search for solving large-scale minimization problems subject to simple bounds on the decision variables. The global convergence of algorithms in this family is ensured by conditions on the descent directions and line search. Whenever a sequence constructed by an algorithm in this family enters a sufficiently small neighborhood of a local minimizer ○ satisfying standard second-order sufficiency conditions, it gets trapped and converges to this local minimizer. Furthermore, in this case, the active constraint set at ○ is identified in a finite number of iterations. This fact is used to ensure that the rate of convergence to a local minimizer, satisfying standard second-order sufficiency conditions, depends only on the behavior of the algorithm in the unconstrained subspace. As a particular example, we present projected versions of the modified Polak–Ribière conjugate gradient method and the limited-memory BFGS quasi-Newton method that retain the convergence properties associated with those algorithms applied to unconstrained problems. | ||
700 | 1 | |a Polak, E. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of optimization theory and applications |d Kluwer Academic Publishers-Plenum Publishers, 1967 |g 92(1997), 1 vom: Jan., Seite 1-31 |w (DE-627)129973467 |w (DE-600)410689-1 |w (DE-576)015536602 |x 0022-3239 |7 nnns |
773 | 1 | 8 | |g volume:92 |g year:1997 |g number:1 |g month:01 |g pages:1-31 |
856 | 4 | 1 | |u https://doi.org/10.1023/A:1022690711754 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4193 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a SA 6420 |
936 | r | v | |a SA 6420 |
951 | |a AR | ||
952 | |d 92 |j 1997 |e 1 |c 01 |h 1-31 |
author_variant |
a s as e p ep |
---|---|
matchkey_str |
article:00223239:1997----::aiyfrjcedsetehdfrpiiainrb |
hierarchy_sort_str |
1997 |
publishDate |
1997 |
allfields |
10.1023/A:1022690711754 doi (DE-627)OLC2026468702 (DE-He213)A:1022690711754-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Schwartz, A. verfasserin aut Family of Projected Descent Methods for Optimization Problems with Simple Bounds 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1997 Abstract This paper presents a family of projected descent direction algorithms with inexact line search for solving large-scale minimization problems subject to simple bounds on the decision variables. The global convergence of algorithms in this family is ensured by conditions on the descent directions and line search. Whenever a sequence constructed by an algorithm in this family enters a sufficiently small neighborhood of a local minimizer ○ satisfying standard second-order sufficiency conditions, it gets trapped and converges to this local minimizer. Furthermore, in this case, the active constraint set at ○ is identified in a finite number of iterations. This fact is used to ensure that the rate of convergence to a local minimizer, satisfying standard second-order sufficiency conditions, depends only on the behavior of the algorithm in the unconstrained subspace. As a particular example, we present projected versions of the modified Polak–Ribière conjugate gradient method and the limited-memory BFGS quasi-Newton method that retain the convergence properties associated with those algorithms applied to unconstrained problems. Polak, E. aut Enthalten in Journal of optimization theory and applications Kluwer Academic Publishers-Plenum Publishers, 1967 92(1997), 1 vom: Jan., Seite 1-31 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:92 year:1997 number:1 month:01 pages:1-31 https://doi.org/10.1023/A:1022690711754 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 6420 SA 6420 AR 92 1997 1 01 1-31 |
spelling |
10.1023/A:1022690711754 doi (DE-627)OLC2026468702 (DE-He213)A:1022690711754-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Schwartz, A. verfasserin aut Family of Projected Descent Methods for Optimization Problems with Simple Bounds 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1997 Abstract This paper presents a family of projected descent direction algorithms with inexact line search for solving large-scale minimization problems subject to simple bounds on the decision variables. The global convergence of algorithms in this family is ensured by conditions on the descent directions and line search. Whenever a sequence constructed by an algorithm in this family enters a sufficiently small neighborhood of a local minimizer ○ satisfying standard second-order sufficiency conditions, it gets trapped and converges to this local minimizer. Furthermore, in this case, the active constraint set at ○ is identified in a finite number of iterations. This fact is used to ensure that the rate of convergence to a local minimizer, satisfying standard second-order sufficiency conditions, depends only on the behavior of the algorithm in the unconstrained subspace. As a particular example, we present projected versions of the modified Polak–Ribière conjugate gradient method and the limited-memory BFGS quasi-Newton method that retain the convergence properties associated with those algorithms applied to unconstrained problems. Polak, E. aut Enthalten in Journal of optimization theory and applications Kluwer Academic Publishers-Plenum Publishers, 1967 92(1997), 1 vom: Jan., Seite 1-31 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:92 year:1997 number:1 month:01 pages:1-31 https://doi.org/10.1023/A:1022690711754 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 6420 SA 6420 AR 92 1997 1 01 1-31 |
allfields_unstemmed |
10.1023/A:1022690711754 doi (DE-627)OLC2026468702 (DE-He213)A:1022690711754-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Schwartz, A. verfasserin aut Family of Projected Descent Methods for Optimization Problems with Simple Bounds 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1997 Abstract This paper presents a family of projected descent direction algorithms with inexact line search for solving large-scale minimization problems subject to simple bounds on the decision variables. The global convergence of algorithms in this family is ensured by conditions on the descent directions and line search. Whenever a sequence constructed by an algorithm in this family enters a sufficiently small neighborhood of a local minimizer ○ satisfying standard second-order sufficiency conditions, it gets trapped and converges to this local minimizer. Furthermore, in this case, the active constraint set at ○ is identified in a finite number of iterations. This fact is used to ensure that the rate of convergence to a local minimizer, satisfying standard second-order sufficiency conditions, depends only on the behavior of the algorithm in the unconstrained subspace. As a particular example, we present projected versions of the modified Polak–Ribière conjugate gradient method and the limited-memory BFGS quasi-Newton method that retain the convergence properties associated with those algorithms applied to unconstrained problems. Polak, E. aut Enthalten in Journal of optimization theory and applications Kluwer Academic Publishers-Plenum Publishers, 1967 92(1997), 1 vom: Jan., Seite 1-31 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:92 year:1997 number:1 month:01 pages:1-31 https://doi.org/10.1023/A:1022690711754 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 6420 SA 6420 AR 92 1997 1 01 1-31 |
allfieldsGer |
10.1023/A:1022690711754 doi (DE-627)OLC2026468702 (DE-He213)A:1022690711754-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Schwartz, A. verfasserin aut Family of Projected Descent Methods for Optimization Problems with Simple Bounds 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1997 Abstract This paper presents a family of projected descent direction algorithms with inexact line search for solving large-scale minimization problems subject to simple bounds on the decision variables. The global convergence of algorithms in this family is ensured by conditions on the descent directions and line search. Whenever a sequence constructed by an algorithm in this family enters a sufficiently small neighborhood of a local minimizer ○ satisfying standard second-order sufficiency conditions, it gets trapped and converges to this local minimizer. Furthermore, in this case, the active constraint set at ○ is identified in a finite number of iterations. This fact is used to ensure that the rate of convergence to a local minimizer, satisfying standard second-order sufficiency conditions, depends only on the behavior of the algorithm in the unconstrained subspace. As a particular example, we present projected versions of the modified Polak–Ribière conjugate gradient method and the limited-memory BFGS quasi-Newton method that retain the convergence properties associated with those algorithms applied to unconstrained problems. Polak, E. aut Enthalten in Journal of optimization theory and applications Kluwer Academic Publishers-Plenum Publishers, 1967 92(1997), 1 vom: Jan., Seite 1-31 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:92 year:1997 number:1 month:01 pages:1-31 https://doi.org/10.1023/A:1022690711754 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 6420 SA 6420 AR 92 1997 1 01 1-31 |
allfieldsSound |
10.1023/A:1022690711754 doi (DE-627)OLC2026468702 (DE-He213)A:1022690711754-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Schwartz, A. verfasserin aut Family of Projected Descent Methods for Optimization Problems with Simple Bounds 1997 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 1997 Abstract This paper presents a family of projected descent direction algorithms with inexact line search for solving large-scale minimization problems subject to simple bounds on the decision variables. The global convergence of algorithms in this family is ensured by conditions on the descent directions and line search. Whenever a sequence constructed by an algorithm in this family enters a sufficiently small neighborhood of a local minimizer ○ satisfying standard second-order sufficiency conditions, it gets trapped and converges to this local minimizer. Furthermore, in this case, the active constraint set at ○ is identified in a finite number of iterations. This fact is used to ensure that the rate of convergence to a local minimizer, satisfying standard second-order sufficiency conditions, depends only on the behavior of the algorithm in the unconstrained subspace. As a particular example, we present projected versions of the modified Polak–Ribière conjugate gradient method and the limited-memory BFGS quasi-Newton method that retain the convergence properties associated with those algorithms applied to unconstrained problems. Polak, E. aut Enthalten in Journal of optimization theory and applications Kluwer Academic Publishers-Plenum Publishers, 1967 92(1997), 1 vom: Jan., Seite 1-31 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:92 year:1997 number:1 month:01 pages:1-31 https://doi.org/10.1023/A:1022690711754 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 6420 SA 6420 AR 92 1997 1 01 1-31 |
language |
English |
source |
Enthalten in Journal of optimization theory and applications 92(1997), 1 vom: Jan., Seite 1-31 volume:92 year:1997 number:1 month:01 pages:1-31 |
sourceStr |
Enthalten in Journal of optimization theory and applications 92(1997), 1 vom: Jan., Seite 1-31 volume:92 year:1997 number:1 month:01 pages:1-31 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
330 |
isfreeaccess_bool |
false |
container_title |
Journal of optimization theory and applications |
authorswithroles_txt_mv |
Schwartz, A. @@aut@@ Polak, E. @@aut@@ |
publishDateDaySort_date |
1997-01-01T00:00:00Z |
hierarchy_top_id |
129973467 |
dewey-sort |
3330 |
id |
OLC2026468702 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026468702</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503154931.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1997 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1022690711754</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026468702</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1022690711754-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schwartz, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Family of Projected Descent Methods for Optimization Problems with Simple Bounds</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1997</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Plenum Publishing Corporation 1997</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper presents a family of projected descent direction algorithms with inexact line search for solving large-scale minimization problems subject to simple bounds on the decision variables. The global convergence of algorithms in this family is ensured by conditions on the descent directions and line search. Whenever a sequence constructed by an algorithm in this family enters a sufficiently small neighborhood of a local minimizer ○ satisfying standard second-order sufficiency conditions, it gets trapped and converges to this local minimizer. Furthermore, in this case, the active constraint set at ○ is identified in a finite number of iterations. This fact is used to ensure that the rate of convergence to a local minimizer, satisfying standard second-order sufficiency conditions, depends only on the behavior of the algorithm in the unconstrained subspace. As a particular example, we present projected versions of the modified Polak–Ribière conjugate gradient method and the limited-memory BFGS quasi-Newton method that retain the convergence properties associated with those algorithms applied to unconstrained problems.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Polak, E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of optimization theory and applications</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1967</subfield><subfield code="g">92(1997), 1 vom: Jan., Seite 1-31</subfield><subfield code="w">(DE-627)129973467</subfield><subfield code="w">(DE-600)410689-1</subfield><subfield code="w">(DE-576)015536602</subfield><subfield code="x">0022-3239</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:92</subfield><subfield code="g">year:1997</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1-31</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1022690711754</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">92</subfield><subfield code="j">1997</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">1-31</subfield></datafield></record></collection>
|
author |
Schwartz, A. |
spellingShingle |
Schwartz, A. ddc 330 ssgn 17,1 rvk SA 6420 Family of Projected Descent Methods for Optimization Problems with Simple Bounds |
authorStr |
Schwartz, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129973467 |
format |
Article |
dewey-ones |
330 - Economics 510 - Mathematics 000 - Computer science, information & general works |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-3239 |
topic_title |
330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk Family of Projected Descent Methods for Optimization Problems with Simple Bounds |
topic |
ddc 330 ssgn 17,1 rvk SA 6420 |
topic_unstemmed |
ddc 330 ssgn 17,1 rvk SA 6420 |
topic_browse |
ddc 330 ssgn 17,1 rvk SA 6420 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of optimization theory and applications |
hierarchy_parent_id |
129973467 |
dewey-tens |
330 - Economics 510 - Mathematics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of optimization theory and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 |
title |
Family of Projected Descent Methods for Optimization Problems with Simple Bounds |
ctrlnum |
(DE-627)OLC2026468702 (DE-He213)A:1022690711754-p |
title_full |
Family of Projected Descent Methods for Optimization Problems with Simple Bounds |
author_sort |
Schwartz, A. |
journal |
Journal of optimization theory and applications |
journalStr |
Journal of optimization theory and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
1997 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Schwartz, A. Polak, E. |
container_volume |
92 |
class |
330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk |
format_se |
Aufsätze |
author-letter |
Schwartz, A. |
doi_str_mv |
10.1023/A:1022690711754 |
dewey-full |
330 510 000 |
title_sort |
family of projected descent methods for optimization problems with simple bounds |
title_auth |
Family of Projected Descent Methods for Optimization Problems with Simple Bounds |
abstract |
Abstract This paper presents a family of projected descent direction algorithms with inexact line search for solving large-scale minimization problems subject to simple bounds on the decision variables. The global convergence of algorithms in this family is ensured by conditions on the descent directions and line search. Whenever a sequence constructed by an algorithm in this family enters a sufficiently small neighborhood of a local minimizer ○ satisfying standard second-order sufficiency conditions, it gets trapped and converges to this local minimizer. Furthermore, in this case, the active constraint set at ○ is identified in a finite number of iterations. This fact is used to ensure that the rate of convergence to a local minimizer, satisfying standard second-order sufficiency conditions, depends only on the behavior of the algorithm in the unconstrained subspace. As a particular example, we present projected versions of the modified Polak–Ribière conjugate gradient method and the limited-memory BFGS quasi-Newton method that retain the convergence properties associated with those algorithms applied to unconstrained problems. © Plenum Publishing Corporation 1997 |
abstractGer |
Abstract This paper presents a family of projected descent direction algorithms with inexact line search for solving large-scale minimization problems subject to simple bounds on the decision variables. The global convergence of algorithms in this family is ensured by conditions on the descent directions and line search. Whenever a sequence constructed by an algorithm in this family enters a sufficiently small neighborhood of a local minimizer ○ satisfying standard second-order sufficiency conditions, it gets trapped and converges to this local minimizer. Furthermore, in this case, the active constraint set at ○ is identified in a finite number of iterations. This fact is used to ensure that the rate of convergence to a local minimizer, satisfying standard second-order sufficiency conditions, depends only on the behavior of the algorithm in the unconstrained subspace. As a particular example, we present projected versions of the modified Polak–Ribière conjugate gradient method and the limited-memory BFGS quasi-Newton method that retain the convergence properties associated with those algorithms applied to unconstrained problems. © Plenum Publishing Corporation 1997 |
abstract_unstemmed |
Abstract This paper presents a family of projected descent direction algorithms with inexact line search for solving large-scale minimization problems subject to simple bounds on the decision variables. The global convergence of algorithms in this family is ensured by conditions on the descent directions and line search. Whenever a sequence constructed by an algorithm in this family enters a sufficiently small neighborhood of a local minimizer ○ satisfying standard second-order sufficiency conditions, it gets trapped and converges to this local minimizer. Furthermore, in this case, the active constraint set at ○ is identified in a finite number of iterations. This fact is used to ensure that the rate of convergence to a local minimizer, satisfying standard second-order sufficiency conditions, depends only on the behavior of the algorithm in the unconstrained subspace. As a particular example, we present projected versions of the modified Polak–Ribière conjugate gradient method and the limited-memory BFGS quasi-Newton method that retain the convergence properties associated with those algorithms applied to unconstrained problems. © Plenum Publishing Corporation 1997 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Family of Projected Descent Methods for Optimization Problems with Simple Bounds |
url |
https://doi.org/10.1023/A:1022690711754 |
remote_bool |
false |
author2 |
Polak, E. |
author2Str |
Polak, E. |
ppnlink |
129973467 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/A:1022690711754 |
up_date |
2024-07-04T04:02:29.965Z |
_version_ |
1803619663841591296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026468702</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503154931.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1997 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1022690711754</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026468702</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1022690711754-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schwartz, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Family of Projected Descent Methods for Optimization Problems with Simple Bounds</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1997</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Plenum Publishing Corporation 1997</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper presents a family of projected descent direction algorithms with inexact line search for solving large-scale minimization problems subject to simple bounds on the decision variables. The global convergence of algorithms in this family is ensured by conditions on the descent directions and line search. Whenever a sequence constructed by an algorithm in this family enters a sufficiently small neighborhood of a local minimizer ○ satisfying standard second-order sufficiency conditions, it gets trapped and converges to this local minimizer. Furthermore, in this case, the active constraint set at ○ is identified in a finite number of iterations. This fact is used to ensure that the rate of convergence to a local minimizer, satisfying standard second-order sufficiency conditions, depends only on the behavior of the algorithm in the unconstrained subspace. As a particular example, we present projected versions of the modified Polak–Ribière conjugate gradient method and the limited-memory BFGS quasi-Newton method that retain the convergence properties associated with those algorithms applied to unconstrained problems.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Polak, E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of optimization theory and applications</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1967</subfield><subfield code="g">92(1997), 1 vom: Jan., Seite 1-31</subfield><subfield code="w">(DE-627)129973467</subfield><subfield code="w">(DE-600)410689-1</subfield><subfield code="w">(DE-576)015536602</subfield><subfield code="x">0022-3239</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:92</subfield><subfield code="g">year:1997</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1-31</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1022690711754</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">92</subfield><subfield code="j">1997</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">1-31</subfield></datafield></record></collection>
|
score |
7.4013977 |