Duality for Set-Valued Multiobjective Optimization Problems, Part 1: Mathematical Programming
Abstract The duality of multiobjective problems is studied with the help of the apparatus of conjugate set-valued mappings introduced by the author. In this paper (Part 1), a duality theory is developed for set-valued mappings, which is then used to derive dual relations for some general multiobject...
Ausführliche Beschreibung
Autor*in: |
Azimov, A. Y. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
Subdifferential of set-valued mappings |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of optimization theory and applications - Springer US, 1967, 137(2007), 1 vom: 07. Nov., Seite 61-74 |
---|---|
Übergeordnetes Werk: |
volume:137 ; year:2007 ; number:1 ; day:07 ; month:11 ; pages:61-74 |
Links: |
---|
DOI / URN: |
10.1007/s10957-007-9313-y |
---|
Katalog-ID: |
OLC2026486964 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026486964 | ||
003 | DE-627 | ||
005 | 20230503155053.0 | ||
007 | tu | ||
008 | 200819s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10957-007-9313-y |2 doi | |
035 | |a (DE-627)OLC2026486964 | ||
035 | |a (DE-He213)s10957-007-9313-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 330 |a 510 |a 000 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 6420 |q VZ |2 rvk | ||
084 | |a SA 6420 |q VZ |2 rvk | ||
100 | 1 | |a Azimov, A. Y. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Duality for Set-Valued Multiobjective Optimization Problems, Part 1: Mathematical Programming |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2007 | ||
520 | |a Abstract The duality of multiobjective problems is studied with the help of the apparatus of conjugate set-valued mappings introduced by the author. In this paper (Part 1), a duality theory is developed for set-valued mappings, which is then used to derive dual relations for some general multiobjective optimization problems which include convex programming and optimal control problems. Using this result, in the companion paper (Part 2), duality theorems are proved for multiobjective quasilinear and linear optimal control problems. The theory is applied to get dual relations for some multiobjective optimal control problem. | ||
650 | 4 | |a Conjugate set-valued mappings | |
650 | 4 | |a Subdifferential of set-valued mappings | |
650 | 4 | |a Duality for set-valued mappings | |
650 | 4 | |a Perturbation methods | |
650 | 4 | |a Duality for multiobjective optimization problems | |
773 | 0 | 8 | |i Enthalten in |t Journal of optimization theory and applications |d Springer US, 1967 |g 137(2007), 1 vom: 07. Nov., Seite 61-74 |w (DE-627)129973467 |w (DE-600)410689-1 |w (DE-576)015536602 |x 0022-3239 |7 nnns |
773 | 1 | 8 | |g volume:137 |g year:2007 |g number:1 |g day:07 |g month:11 |g pages:61-74 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10957-007-9313-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4193 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a SA 6420 |
936 | r | v | |a SA 6420 |
951 | |a AR | ||
952 | |d 137 |j 2007 |e 1 |b 07 |c 11 |h 61-74 |
author_variant |
a y a ay aya |
---|---|
matchkey_str |
article:00223239:2007----::ultfrevlemlibetvotmztopolmpr1a |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s10957-007-9313-y doi (DE-627)OLC2026486964 (DE-He213)s10957-007-9313-y-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Azimov, A. Y. verfasserin aut Duality for Set-Valued Multiobjective Optimization Problems, Part 1: Mathematical Programming 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract The duality of multiobjective problems is studied with the help of the apparatus of conjugate set-valued mappings introduced by the author. In this paper (Part 1), a duality theory is developed for set-valued mappings, which is then used to derive dual relations for some general multiobjective optimization problems which include convex programming and optimal control problems. Using this result, in the companion paper (Part 2), duality theorems are proved for multiobjective quasilinear and linear optimal control problems. The theory is applied to get dual relations for some multiobjective optimal control problem. Conjugate set-valued mappings Subdifferential of set-valued mappings Duality for set-valued mappings Perturbation methods Duality for multiobjective optimization problems Enthalten in Journal of optimization theory and applications Springer US, 1967 137(2007), 1 vom: 07. Nov., Seite 61-74 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:137 year:2007 number:1 day:07 month:11 pages:61-74 https://doi.org/10.1007/s10957-007-9313-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4193 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 6420 SA 6420 AR 137 2007 1 07 11 61-74 |
spelling |
10.1007/s10957-007-9313-y doi (DE-627)OLC2026486964 (DE-He213)s10957-007-9313-y-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Azimov, A. Y. verfasserin aut Duality for Set-Valued Multiobjective Optimization Problems, Part 1: Mathematical Programming 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract The duality of multiobjective problems is studied with the help of the apparatus of conjugate set-valued mappings introduced by the author. In this paper (Part 1), a duality theory is developed for set-valued mappings, which is then used to derive dual relations for some general multiobjective optimization problems which include convex programming and optimal control problems. Using this result, in the companion paper (Part 2), duality theorems are proved for multiobjective quasilinear and linear optimal control problems. The theory is applied to get dual relations for some multiobjective optimal control problem. Conjugate set-valued mappings Subdifferential of set-valued mappings Duality for set-valued mappings Perturbation methods Duality for multiobjective optimization problems Enthalten in Journal of optimization theory and applications Springer US, 1967 137(2007), 1 vom: 07. Nov., Seite 61-74 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:137 year:2007 number:1 day:07 month:11 pages:61-74 https://doi.org/10.1007/s10957-007-9313-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4193 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 6420 SA 6420 AR 137 2007 1 07 11 61-74 |
allfields_unstemmed |
10.1007/s10957-007-9313-y doi (DE-627)OLC2026486964 (DE-He213)s10957-007-9313-y-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Azimov, A. Y. verfasserin aut Duality for Set-Valued Multiobjective Optimization Problems, Part 1: Mathematical Programming 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract The duality of multiobjective problems is studied with the help of the apparatus of conjugate set-valued mappings introduced by the author. In this paper (Part 1), a duality theory is developed for set-valued mappings, which is then used to derive dual relations for some general multiobjective optimization problems which include convex programming and optimal control problems. Using this result, in the companion paper (Part 2), duality theorems are proved for multiobjective quasilinear and linear optimal control problems. The theory is applied to get dual relations for some multiobjective optimal control problem. Conjugate set-valued mappings Subdifferential of set-valued mappings Duality for set-valued mappings Perturbation methods Duality for multiobjective optimization problems Enthalten in Journal of optimization theory and applications Springer US, 1967 137(2007), 1 vom: 07. Nov., Seite 61-74 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:137 year:2007 number:1 day:07 month:11 pages:61-74 https://doi.org/10.1007/s10957-007-9313-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4193 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 6420 SA 6420 AR 137 2007 1 07 11 61-74 |
allfieldsGer |
10.1007/s10957-007-9313-y doi (DE-627)OLC2026486964 (DE-He213)s10957-007-9313-y-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Azimov, A. Y. verfasserin aut Duality for Set-Valued Multiobjective Optimization Problems, Part 1: Mathematical Programming 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract The duality of multiobjective problems is studied with the help of the apparatus of conjugate set-valued mappings introduced by the author. In this paper (Part 1), a duality theory is developed for set-valued mappings, which is then used to derive dual relations for some general multiobjective optimization problems which include convex programming and optimal control problems. Using this result, in the companion paper (Part 2), duality theorems are proved for multiobjective quasilinear and linear optimal control problems. The theory is applied to get dual relations for some multiobjective optimal control problem. Conjugate set-valued mappings Subdifferential of set-valued mappings Duality for set-valued mappings Perturbation methods Duality for multiobjective optimization problems Enthalten in Journal of optimization theory and applications Springer US, 1967 137(2007), 1 vom: 07. Nov., Seite 61-74 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:137 year:2007 number:1 day:07 month:11 pages:61-74 https://doi.org/10.1007/s10957-007-9313-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4193 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 6420 SA 6420 AR 137 2007 1 07 11 61-74 |
allfieldsSound |
10.1007/s10957-007-9313-y doi (DE-627)OLC2026486964 (DE-He213)s10957-007-9313-y-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Azimov, A. Y. verfasserin aut Duality for Set-Valued Multiobjective Optimization Problems, Part 1: Mathematical Programming 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract The duality of multiobjective problems is studied with the help of the apparatus of conjugate set-valued mappings introduced by the author. In this paper (Part 1), a duality theory is developed for set-valued mappings, which is then used to derive dual relations for some general multiobjective optimization problems which include convex programming and optimal control problems. Using this result, in the companion paper (Part 2), duality theorems are proved for multiobjective quasilinear and linear optimal control problems. The theory is applied to get dual relations for some multiobjective optimal control problem. Conjugate set-valued mappings Subdifferential of set-valued mappings Duality for set-valued mappings Perturbation methods Duality for multiobjective optimization problems Enthalten in Journal of optimization theory and applications Springer US, 1967 137(2007), 1 vom: 07. Nov., Seite 61-74 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:137 year:2007 number:1 day:07 month:11 pages:61-74 https://doi.org/10.1007/s10957-007-9313-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4193 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 6420 SA 6420 AR 137 2007 1 07 11 61-74 |
language |
English |
source |
Enthalten in Journal of optimization theory and applications 137(2007), 1 vom: 07. Nov., Seite 61-74 volume:137 year:2007 number:1 day:07 month:11 pages:61-74 |
sourceStr |
Enthalten in Journal of optimization theory and applications 137(2007), 1 vom: 07. Nov., Seite 61-74 volume:137 year:2007 number:1 day:07 month:11 pages:61-74 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Conjugate set-valued mappings Subdifferential of set-valued mappings Duality for set-valued mappings Perturbation methods Duality for multiobjective optimization problems |
dewey-raw |
330 |
isfreeaccess_bool |
false |
container_title |
Journal of optimization theory and applications |
authorswithroles_txt_mv |
Azimov, A. Y. @@aut@@ |
publishDateDaySort_date |
2007-11-07T00:00:00Z |
hierarchy_top_id |
129973467 |
dewey-sort |
3330 |
id |
OLC2026486964 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026486964</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503155053.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10957-007-9313-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026486964</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10957-007-9313-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Azimov, A. Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Duality for Set-Valued Multiobjective Optimization Problems, Part 1: Mathematical Programming</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The duality of multiobjective problems is studied with the help of the apparatus of conjugate set-valued mappings introduced by the author. In this paper (Part 1), a duality theory is developed for set-valued mappings, which is then used to derive dual relations for some general multiobjective optimization problems which include convex programming and optimal control problems. Using this result, in the companion paper (Part 2), duality theorems are proved for multiobjective quasilinear and linear optimal control problems. The theory is applied to get dual relations for some multiobjective optimal control problem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conjugate set-valued mappings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subdifferential of set-valued mappings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Duality for set-valued mappings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perturbation methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Duality for multiobjective optimization problems</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of optimization theory and applications</subfield><subfield code="d">Springer US, 1967</subfield><subfield code="g">137(2007), 1 vom: 07. Nov., Seite 61-74</subfield><subfield code="w">(DE-627)129973467</subfield><subfield code="w">(DE-600)410689-1</subfield><subfield code="w">(DE-576)015536602</subfield><subfield code="x">0022-3239</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:137</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:1</subfield><subfield code="g">day:07</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:61-74</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10957-007-9313-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">137</subfield><subfield code="j">2007</subfield><subfield code="e">1</subfield><subfield code="b">07</subfield><subfield code="c">11</subfield><subfield code="h">61-74</subfield></datafield></record></collection>
|
author |
Azimov, A. Y. |
spellingShingle |
Azimov, A. Y. ddc 330 ssgn 17,1 rvk SA 6420 misc Conjugate set-valued mappings misc Subdifferential of set-valued mappings misc Duality for set-valued mappings misc Perturbation methods misc Duality for multiobjective optimization problems Duality for Set-Valued Multiobjective Optimization Problems, Part 1: Mathematical Programming |
authorStr |
Azimov, A. Y. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129973467 |
format |
Article |
dewey-ones |
330 - Economics 510 - Mathematics 000 - Computer science, information & general works |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-3239 |
topic_title |
330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk Duality for Set-Valued Multiobjective Optimization Problems, Part 1: Mathematical Programming Conjugate set-valued mappings Subdifferential of set-valued mappings Duality for set-valued mappings Perturbation methods Duality for multiobjective optimization problems |
topic |
ddc 330 ssgn 17,1 rvk SA 6420 misc Conjugate set-valued mappings misc Subdifferential of set-valued mappings misc Duality for set-valued mappings misc Perturbation methods misc Duality for multiobjective optimization problems |
topic_unstemmed |
ddc 330 ssgn 17,1 rvk SA 6420 misc Conjugate set-valued mappings misc Subdifferential of set-valued mappings misc Duality for set-valued mappings misc Perturbation methods misc Duality for multiobjective optimization problems |
topic_browse |
ddc 330 ssgn 17,1 rvk SA 6420 misc Conjugate set-valued mappings misc Subdifferential of set-valued mappings misc Duality for set-valued mappings misc Perturbation methods misc Duality for multiobjective optimization problems |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of optimization theory and applications |
hierarchy_parent_id |
129973467 |
dewey-tens |
330 - Economics 510 - Mathematics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of optimization theory and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 |
title |
Duality for Set-Valued Multiobjective Optimization Problems, Part 1: Mathematical Programming |
ctrlnum |
(DE-627)OLC2026486964 (DE-He213)s10957-007-9313-y-p |
title_full |
Duality for Set-Valued Multiobjective Optimization Problems, Part 1: Mathematical Programming |
author_sort |
Azimov, A. Y. |
journal |
Journal of optimization theory and applications |
journalStr |
Journal of optimization theory and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
61 |
author_browse |
Azimov, A. Y. |
container_volume |
137 |
class |
330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk |
format_se |
Aufsätze |
author-letter |
Azimov, A. Y. |
doi_str_mv |
10.1007/s10957-007-9313-y |
dewey-full |
330 510 000 |
title_sort |
duality for set-valued multiobjective optimization problems, part 1: mathematical programming |
title_auth |
Duality for Set-Valued Multiobjective Optimization Problems, Part 1: Mathematical Programming |
abstract |
Abstract The duality of multiobjective problems is studied with the help of the apparatus of conjugate set-valued mappings introduced by the author. In this paper (Part 1), a duality theory is developed for set-valued mappings, which is then used to derive dual relations for some general multiobjective optimization problems which include convex programming and optimal control problems. Using this result, in the companion paper (Part 2), duality theorems are proved for multiobjective quasilinear and linear optimal control problems. The theory is applied to get dual relations for some multiobjective optimal control problem. © Springer Science+Business Media, LLC 2007 |
abstractGer |
Abstract The duality of multiobjective problems is studied with the help of the apparatus of conjugate set-valued mappings introduced by the author. In this paper (Part 1), a duality theory is developed for set-valued mappings, which is then used to derive dual relations for some general multiobjective optimization problems which include convex programming and optimal control problems. Using this result, in the companion paper (Part 2), duality theorems are proved for multiobjective quasilinear and linear optimal control problems. The theory is applied to get dual relations for some multiobjective optimal control problem. © Springer Science+Business Media, LLC 2007 |
abstract_unstemmed |
Abstract The duality of multiobjective problems is studied with the help of the apparatus of conjugate set-valued mappings introduced by the author. In this paper (Part 1), a duality theory is developed for set-valued mappings, which is then used to derive dual relations for some general multiobjective optimization problems which include convex programming and optimal control problems. Using this result, in the companion paper (Part 2), duality theorems are proved for multiobjective quasilinear and linear optimal control problems. The theory is applied to get dual relations for some multiobjective optimal control problem. © Springer Science+Business Media, LLC 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4193 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Duality for Set-Valued Multiobjective Optimization Problems, Part 1: Mathematical Programming |
url |
https://doi.org/10.1007/s10957-007-9313-y |
remote_bool |
false |
ppnlink |
129973467 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10957-007-9313-y |
up_date |
2024-07-04T04:04:45.637Z |
_version_ |
1803619806102945792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026486964</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503155053.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10957-007-9313-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026486964</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10957-007-9313-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Azimov, A. Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Duality for Set-Valued Multiobjective Optimization Problems, Part 1: Mathematical Programming</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The duality of multiobjective problems is studied with the help of the apparatus of conjugate set-valued mappings introduced by the author. In this paper (Part 1), a duality theory is developed for set-valued mappings, which is then used to derive dual relations for some general multiobjective optimization problems which include convex programming and optimal control problems. Using this result, in the companion paper (Part 2), duality theorems are proved for multiobjective quasilinear and linear optimal control problems. The theory is applied to get dual relations for some multiobjective optimal control problem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conjugate set-valued mappings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subdifferential of set-valued mappings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Duality for set-valued mappings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perturbation methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Duality for multiobjective optimization problems</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of optimization theory and applications</subfield><subfield code="d">Springer US, 1967</subfield><subfield code="g">137(2007), 1 vom: 07. Nov., Seite 61-74</subfield><subfield code="w">(DE-627)129973467</subfield><subfield code="w">(DE-600)410689-1</subfield><subfield code="w">(DE-576)015536602</subfield><subfield code="x">0022-3239</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:137</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:1</subfield><subfield code="g">day:07</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:61-74</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10957-007-9313-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">137</subfield><subfield code="j">2007</subfield><subfield code="e">1</subfield><subfield code="b">07</subfield><subfield code="c">11</subfield><subfield code="h">61-74</subfield></datafield></record></collection>
|
score |
7.40092 |