New Second-Order Directional Derivative and Optimality Conditions in Scalar and Vector Optimization
Abstract We present a new second-order directional derivative and study its properties. Using this derivative and the parabolic second-order derivative, we establish second-order necessary and sufficient optimality conditions for a general scalar optimization problem by means of the asymptotic and p...
Ausführliche Beschreibung
Autor*in: |
Gutiérrez, C. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2009 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2009 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of optimization theory and applications - Springer US, 1967, 142(2009), 1 vom: 27. Feb., Seite 85-106 |
---|---|
Übergeordnetes Werk: |
volume:142 ; year:2009 ; number:1 ; day:27 ; month:02 ; pages:85-106 |
Links: |
---|
DOI / URN: |
10.1007/s10957-009-9525-4 |
---|
Katalog-ID: |
OLC202648838X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC202648838X | ||
003 | DE-627 | ||
005 | 20230503155105.0 | ||
007 | tu | ||
008 | 200819s2009 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10957-009-9525-4 |2 doi | |
035 | |a (DE-627)OLC202648838X | ||
035 | |a (DE-He213)s10957-009-9525-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 330 |a 510 |a 000 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 6420 |q VZ |2 rvk | ||
084 | |a SA 6420 |q VZ |2 rvk | ||
100 | 1 | |a Gutiérrez, C. |e verfasserin |4 aut | |
245 | 1 | 0 | |a New Second-Order Directional Derivative and Optimality Conditions in Scalar and Vector Optimization |
264 | 1 | |c 2009 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2009 | ||
520 | |a Abstract We present a new second-order directional derivative and study its properties. Using this derivative and the parabolic second-order derivative, we establish second-order necessary and sufficient optimality conditions for a general scalar optimization problem by means of the asymptotic and parabolic second-order tangent sets to the feasible set. For the sufficient conditions, the initial space must be finite dimensional. Then, these conditions are applied to a general vector optimization problem obtaining second-order optimality conditions that generalize the differentiable case. For this aim, we introduce a scalarization, and the relationships between the different types of solutions to the vector optimization problem and the scalarized problem are studied. | ||
650 | 4 | |a Second order directional derivative | |
650 | 4 | |a Optimality conditions | |
650 | 4 | |a Vector optimization | |
650 | 4 | |a Scalarization | |
650 | 4 | |a Second order tangent set | |
700 | 1 | |a Jiménez, B. |4 aut | |
700 | 1 | |a Novo, V. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of optimization theory and applications |d Springer US, 1967 |g 142(2009), 1 vom: 27. Feb., Seite 85-106 |w (DE-627)129973467 |w (DE-600)410689-1 |w (DE-576)015536602 |x 0022-3239 |7 nnns |
773 | 1 | 8 | |g volume:142 |g year:2009 |g number:1 |g day:27 |g month:02 |g pages:85-106 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10957-009-9525-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4193 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a SA 6420 |
936 | r | v | |a SA 6420 |
951 | |a AR | ||
952 | |d 142 |j 2009 |e 1 |b 27 |c 02 |h 85-106 |
author_variant |
c g cg b j bj v n vn |
---|---|
matchkey_str |
article:00223239:2009----::escnodrietoadrvtvadpiaiyodtosnc |
hierarchy_sort_str |
2009 |
publishDate |
2009 |
allfields |
10.1007/s10957-009-9525-4 doi (DE-627)OLC202648838X (DE-He213)s10957-009-9525-4-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Gutiérrez, C. verfasserin aut New Second-Order Directional Derivative and Optimality Conditions in Scalar and Vector Optimization 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2009 Abstract We present a new second-order directional derivative and study its properties. Using this derivative and the parabolic second-order derivative, we establish second-order necessary and sufficient optimality conditions for a general scalar optimization problem by means of the asymptotic and parabolic second-order tangent sets to the feasible set. For the sufficient conditions, the initial space must be finite dimensional. Then, these conditions are applied to a general vector optimization problem obtaining second-order optimality conditions that generalize the differentiable case. For this aim, we introduce a scalarization, and the relationships between the different types of solutions to the vector optimization problem and the scalarized problem are studied. Second order directional derivative Optimality conditions Vector optimization Scalarization Second order tangent set Jiménez, B. aut Novo, V. aut Enthalten in Journal of optimization theory and applications Springer US, 1967 142(2009), 1 vom: 27. Feb., Seite 85-106 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:142 year:2009 number:1 day:27 month:02 pages:85-106 https://doi.org/10.1007/s10957-009-9525-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_24 GBV_ILN_26 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4193 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 6420 SA 6420 AR 142 2009 1 27 02 85-106 |
spelling |
10.1007/s10957-009-9525-4 doi (DE-627)OLC202648838X (DE-He213)s10957-009-9525-4-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Gutiérrez, C. verfasserin aut New Second-Order Directional Derivative and Optimality Conditions in Scalar and Vector Optimization 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2009 Abstract We present a new second-order directional derivative and study its properties. Using this derivative and the parabolic second-order derivative, we establish second-order necessary and sufficient optimality conditions for a general scalar optimization problem by means of the asymptotic and parabolic second-order tangent sets to the feasible set. For the sufficient conditions, the initial space must be finite dimensional. Then, these conditions are applied to a general vector optimization problem obtaining second-order optimality conditions that generalize the differentiable case. For this aim, we introduce a scalarization, and the relationships between the different types of solutions to the vector optimization problem and the scalarized problem are studied. Second order directional derivative Optimality conditions Vector optimization Scalarization Second order tangent set Jiménez, B. aut Novo, V. aut Enthalten in Journal of optimization theory and applications Springer US, 1967 142(2009), 1 vom: 27. Feb., Seite 85-106 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:142 year:2009 number:1 day:27 month:02 pages:85-106 https://doi.org/10.1007/s10957-009-9525-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_24 GBV_ILN_26 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4193 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 6420 SA 6420 AR 142 2009 1 27 02 85-106 |
allfields_unstemmed |
10.1007/s10957-009-9525-4 doi (DE-627)OLC202648838X (DE-He213)s10957-009-9525-4-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Gutiérrez, C. verfasserin aut New Second-Order Directional Derivative and Optimality Conditions in Scalar and Vector Optimization 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2009 Abstract We present a new second-order directional derivative and study its properties. Using this derivative and the parabolic second-order derivative, we establish second-order necessary and sufficient optimality conditions for a general scalar optimization problem by means of the asymptotic and parabolic second-order tangent sets to the feasible set. For the sufficient conditions, the initial space must be finite dimensional. Then, these conditions are applied to a general vector optimization problem obtaining second-order optimality conditions that generalize the differentiable case. For this aim, we introduce a scalarization, and the relationships between the different types of solutions to the vector optimization problem and the scalarized problem are studied. Second order directional derivative Optimality conditions Vector optimization Scalarization Second order tangent set Jiménez, B. aut Novo, V. aut Enthalten in Journal of optimization theory and applications Springer US, 1967 142(2009), 1 vom: 27. Feb., Seite 85-106 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:142 year:2009 number:1 day:27 month:02 pages:85-106 https://doi.org/10.1007/s10957-009-9525-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_24 GBV_ILN_26 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4193 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 6420 SA 6420 AR 142 2009 1 27 02 85-106 |
allfieldsGer |
10.1007/s10957-009-9525-4 doi (DE-627)OLC202648838X (DE-He213)s10957-009-9525-4-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Gutiérrez, C. verfasserin aut New Second-Order Directional Derivative and Optimality Conditions in Scalar and Vector Optimization 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2009 Abstract We present a new second-order directional derivative and study its properties. Using this derivative and the parabolic second-order derivative, we establish second-order necessary and sufficient optimality conditions for a general scalar optimization problem by means of the asymptotic and parabolic second-order tangent sets to the feasible set. For the sufficient conditions, the initial space must be finite dimensional. Then, these conditions are applied to a general vector optimization problem obtaining second-order optimality conditions that generalize the differentiable case. For this aim, we introduce a scalarization, and the relationships between the different types of solutions to the vector optimization problem and the scalarized problem are studied. Second order directional derivative Optimality conditions Vector optimization Scalarization Second order tangent set Jiménez, B. aut Novo, V. aut Enthalten in Journal of optimization theory and applications Springer US, 1967 142(2009), 1 vom: 27. Feb., Seite 85-106 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:142 year:2009 number:1 day:27 month:02 pages:85-106 https://doi.org/10.1007/s10957-009-9525-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_24 GBV_ILN_26 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4193 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 6420 SA 6420 AR 142 2009 1 27 02 85-106 |
allfieldsSound |
10.1007/s10957-009-9525-4 doi (DE-627)OLC202648838X (DE-He213)s10957-009-9525-4-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Gutiérrez, C. verfasserin aut New Second-Order Directional Derivative and Optimality Conditions in Scalar and Vector Optimization 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2009 Abstract We present a new second-order directional derivative and study its properties. Using this derivative and the parabolic second-order derivative, we establish second-order necessary and sufficient optimality conditions for a general scalar optimization problem by means of the asymptotic and parabolic second-order tangent sets to the feasible set. For the sufficient conditions, the initial space must be finite dimensional. Then, these conditions are applied to a general vector optimization problem obtaining second-order optimality conditions that generalize the differentiable case. For this aim, we introduce a scalarization, and the relationships between the different types of solutions to the vector optimization problem and the scalarized problem are studied. Second order directional derivative Optimality conditions Vector optimization Scalarization Second order tangent set Jiménez, B. aut Novo, V. aut Enthalten in Journal of optimization theory and applications Springer US, 1967 142(2009), 1 vom: 27. Feb., Seite 85-106 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:142 year:2009 number:1 day:27 month:02 pages:85-106 https://doi.org/10.1007/s10957-009-9525-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_24 GBV_ILN_26 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4193 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 6420 SA 6420 AR 142 2009 1 27 02 85-106 |
language |
English |
source |
Enthalten in Journal of optimization theory and applications 142(2009), 1 vom: 27. Feb., Seite 85-106 volume:142 year:2009 number:1 day:27 month:02 pages:85-106 |
sourceStr |
Enthalten in Journal of optimization theory and applications 142(2009), 1 vom: 27. Feb., Seite 85-106 volume:142 year:2009 number:1 day:27 month:02 pages:85-106 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Second order directional derivative Optimality conditions Vector optimization Scalarization Second order tangent set |
dewey-raw |
330 |
isfreeaccess_bool |
false |
container_title |
Journal of optimization theory and applications |
authorswithroles_txt_mv |
Gutiérrez, C. @@aut@@ Jiménez, B. @@aut@@ Novo, V. @@aut@@ |
publishDateDaySort_date |
2009-02-27T00:00:00Z |
hierarchy_top_id |
129973467 |
dewey-sort |
3330 |
id |
OLC202648838X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC202648838X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503155105.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2009 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10957-009-9525-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC202648838X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10957-009-9525-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gutiérrez, C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New Second-Order Directional Derivative and Optimality Conditions in Scalar and Vector Optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present a new second-order directional derivative and study its properties. Using this derivative and the parabolic second-order derivative, we establish second-order necessary and sufficient optimality conditions for a general scalar optimization problem by means of the asymptotic and parabolic second-order tangent sets to the feasible set. For the sufficient conditions, the initial space must be finite dimensional. Then, these conditions are applied to a general vector optimization problem obtaining second-order optimality conditions that generalize the differentiable case. For this aim, we introduce a scalarization, and the relationships between the different types of solutions to the vector optimization problem and the scalarized problem are studied.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Second order directional derivative</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimality conditions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scalarization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Second order tangent set</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiménez, B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Novo, V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of optimization theory and applications</subfield><subfield code="d">Springer US, 1967</subfield><subfield code="g">142(2009), 1 vom: 27. Feb., Seite 85-106</subfield><subfield code="w">(DE-627)129973467</subfield><subfield code="w">(DE-600)410689-1</subfield><subfield code="w">(DE-576)015536602</subfield><subfield code="x">0022-3239</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:142</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:1</subfield><subfield code="g">day:27</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:85-106</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10957-009-9525-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">142</subfield><subfield code="j">2009</subfield><subfield code="e">1</subfield><subfield code="b">27</subfield><subfield code="c">02</subfield><subfield code="h">85-106</subfield></datafield></record></collection>
|
author |
Gutiérrez, C. |
spellingShingle |
Gutiérrez, C. ddc 330 ssgn 17,1 rvk SA 6420 misc Second order directional derivative misc Optimality conditions misc Vector optimization misc Scalarization misc Second order tangent set New Second-Order Directional Derivative and Optimality Conditions in Scalar and Vector Optimization |
authorStr |
Gutiérrez, C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129973467 |
format |
Article |
dewey-ones |
330 - Economics 510 - Mathematics 000 - Computer science, information & general works |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-3239 |
topic_title |
330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk New Second-Order Directional Derivative and Optimality Conditions in Scalar and Vector Optimization Second order directional derivative Optimality conditions Vector optimization Scalarization Second order tangent set |
topic |
ddc 330 ssgn 17,1 rvk SA 6420 misc Second order directional derivative misc Optimality conditions misc Vector optimization misc Scalarization misc Second order tangent set |
topic_unstemmed |
ddc 330 ssgn 17,1 rvk SA 6420 misc Second order directional derivative misc Optimality conditions misc Vector optimization misc Scalarization misc Second order tangent set |
topic_browse |
ddc 330 ssgn 17,1 rvk SA 6420 misc Second order directional derivative misc Optimality conditions misc Vector optimization misc Scalarization misc Second order tangent set |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of optimization theory and applications |
hierarchy_parent_id |
129973467 |
dewey-tens |
330 - Economics 510 - Mathematics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of optimization theory and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 |
title |
New Second-Order Directional Derivative and Optimality Conditions in Scalar and Vector Optimization |
ctrlnum |
(DE-627)OLC202648838X (DE-He213)s10957-009-9525-4-p |
title_full |
New Second-Order Directional Derivative and Optimality Conditions in Scalar and Vector Optimization |
author_sort |
Gutiérrez, C. |
journal |
Journal of optimization theory and applications |
journalStr |
Journal of optimization theory and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2009 |
contenttype_str_mv |
txt |
container_start_page |
85 |
author_browse |
Gutiérrez, C. Jiménez, B. Novo, V. |
container_volume |
142 |
class |
330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk |
format_se |
Aufsätze |
author-letter |
Gutiérrez, C. |
doi_str_mv |
10.1007/s10957-009-9525-4 |
dewey-full |
330 510 000 |
title_sort |
new second-order directional derivative and optimality conditions in scalar and vector optimization |
title_auth |
New Second-Order Directional Derivative and Optimality Conditions in Scalar and Vector Optimization |
abstract |
Abstract We present a new second-order directional derivative and study its properties. Using this derivative and the parabolic second-order derivative, we establish second-order necessary and sufficient optimality conditions for a general scalar optimization problem by means of the asymptotic and parabolic second-order tangent sets to the feasible set. For the sufficient conditions, the initial space must be finite dimensional. Then, these conditions are applied to a general vector optimization problem obtaining second-order optimality conditions that generalize the differentiable case. For this aim, we introduce a scalarization, and the relationships between the different types of solutions to the vector optimization problem and the scalarized problem are studied. © Springer Science+Business Media, LLC 2009 |
abstractGer |
Abstract We present a new second-order directional derivative and study its properties. Using this derivative and the parabolic second-order derivative, we establish second-order necessary and sufficient optimality conditions for a general scalar optimization problem by means of the asymptotic and parabolic second-order tangent sets to the feasible set. For the sufficient conditions, the initial space must be finite dimensional. Then, these conditions are applied to a general vector optimization problem obtaining second-order optimality conditions that generalize the differentiable case. For this aim, we introduce a scalarization, and the relationships between the different types of solutions to the vector optimization problem and the scalarized problem are studied. © Springer Science+Business Media, LLC 2009 |
abstract_unstemmed |
Abstract We present a new second-order directional derivative and study its properties. Using this derivative and the parabolic second-order derivative, we establish second-order necessary and sufficient optimality conditions for a general scalar optimization problem by means of the asymptotic and parabolic second-order tangent sets to the feasible set. For the sufficient conditions, the initial space must be finite dimensional. Then, these conditions are applied to a general vector optimization problem obtaining second-order optimality conditions that generalize the differentiable case. For this aim, we introduce a scalarization, and the relationships between the different types of solutions to the vector optimization problem and the scalarized problem are studied. © Springer Science+Business Media, LLC 2009 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_24 GBV_ILN_26 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2006 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2021 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4193 GBV_ILN_4266 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
1 |
title_short |
New Second-Order Directional Derivative and Optimality Conditions in Scalar and Vector Optimization |
url |
https://doi.org/10.1007/s10957-009-9525-4 |
remote_bool |
false |
author2 |
Jiménez, B. Novo, V. |
author2Str |
Jiménez, B. Novo, V. |
ppnlink |
129973467 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10957-009-9525-4 |
up_date |
2024-07-04T04:04:57.690Z |
_version_ |
1803619818749820928 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC202648838X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503155105.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2009 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10957-009-9525-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC202648838X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10957-009-9525-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gutiérrez, C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New Second-Order Directional Derivative and Optimality Conditions in Scalar and Vector Optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present a new second-order directional derivative and study its properties. Using this derivative and the parabolic second-order derivative, we establish second-order necessary and sufficient optimality conditions for a general scalar optimization problem by means of the asymptotic and parabolic second-order tangent sets to the feasible set. For the sufficient conditions, the initial space must be finite dimensional. Then, these conditions are applied to a general vector optimization problem obtaining second-order optimality conditions that generalize the differentiable case. For this aim, we introduce a scalarization, and the relationships between the different types of solutions to the vector optimization problem and the scalarized problem are studied.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Second order directional derivative</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimality conditions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scalarization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Second order tangent set</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiménez, B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Novo, V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of optimization theory and applications</subfield><subfield code="d">Springer US, 1967</subfield><subfield code="g">142(2009), 1 vom: 27. Feb., Seite 85-106</subfield><subfield code="w">(DE-627)129973467</subfield><subfield code="w">(DE-600)410689-1</subfield><subfield code="w">(DE-576)015536602</subfield><subfield code="x">0022-3239</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:142</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:1</subfield><subfield code="g">day:27</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:85-106</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10957-009-9525-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">142</subfield><subfield code="j">2009</subfield><subfield code="e">1</subfield><subfield code="b">27</subfield><subfield code="c">02</subfield><subfield code="h">85-106</subfield></datafield></record></collection>
|
score |
7.401039 |