Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming
Abstract Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue bas...
Ausführliche Beschreibung
Autor*in: |
Hu, Shenglong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer Science+Business Media New York 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of optimization theory and applications - Springer US, 1967, 158(2013), 3 vom: 02. März, Seite 717-738 |
---|---|
Übergeordnetes Werk: |
volume:158 ; year:2013 ; number:3 ; day:02 ; month:03 ; pages:717-738 |
Links: |
---|
DOI / URN: |
10.1007/s10957-013-0293-9 |
---|
Katalog-ID: |
OLC2026495106 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026495106 | ||
003 | DE-627 | ||
005 | 20230503155155.0 | ||
007 | tu | ||
008 | 200819s2013 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10957-013-0293-9 |2 doi | |
035 | |a (DE-627)OLC2026495106 | ||
035 | |a (DE-He213)s10957-013-0293-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 330 |a 510 |a 000 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 6420 |q VZ |2 rvk | ||
084 | |a SA 6420 |q VZ |2 rvk | ||
100 | 1 | |a Hu, Shenglong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2013 | ||
520 | |a Abstract Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type theorem. In this paper, we consider a new class of tensors called essentially nonnegative tensors, which extends the concept of nonnegative tensors, and examine the maximum eigenvalue of an essentially nonnegative tensor using the polynomial optimization techniques. We first establish that finding the maximum eigenvalue of an essentially nonnegative symmetric tensor is equivalent to solving a sum of squares of polynomials (SOS) optimization problem, which, in its turn, can be equivalently rewritten as a semi-definite programming problem. Then, using this sum of squares programming problem, we also provide upper and lower estimates for the maximum eigenvalue of general symmetric tensors. These upper and lower estimates can be calculated in terms of the entries of the tensor. Numerical examples are also presented to illustrate the significance of the results. | ||
650 | 4 | |a Symmetric tensors | |
650 | 4 | |a Maximum eigenvalue | |
650 | 4 | |a Sum of squares of polynomials | |
650 | 4 | |a Semi-definite programming problem | |
700 | 1 | |a Li, Guoyin |4 aut | |
700 | 1 | |a Qi, Liqun |4 aut | |
700 | 1 | |a Song, Yisheng |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of optimization theory and applications |d Springer US, 1967 |g 158(2013), 3 vom: 02. März, Seite 717-738 |w (DE-627)129973467 |w (DE-600)410689-1 |w (DE-576)015536602 |x 0022-3239 |7 nnns |
773 | 1 | 8 | |g volume:158 |g year:2013 |g number:3 |g day:02 |g month:03 |g pages:717-738 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10957-013-0293-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4700 | ||
936 | r | v | |a SA 6420 |
936 | r | v | |a SA 6420 |
951 | |a AR | ||
952 | |d 158 |j 2013 |e 3 |b 02 |c 03 |h 717-738 |
author_variant |
s h sh g l gl l q lq y s ys |
---|---|
matchkey_str |
article:00223239:2013----::idnteaiuegnauoesnilyongtvsmercesrv |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1007/s10957-013-0293-9 doi (DE-627)OLC2026495106 (DE-He213)s10957-013-0293-9-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Hu, Shenglong verfasserin aut Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type theorem. In this paper, we consider a new class of tensors called essentially nonnegative tensors, which extends the concept of nonnegative tensors, and examine the maximum eigenvalue of an essentially nonnegative tensor using the polynomial optimization techniques. We first establish that finding the maximum eigenvalue of an essentially nonnegative symmetric tensor is equivalent to solving a sum of squares of polynomials (SOS) optimization problem, which, in its turn, can be equivalently rewritten as a semi-definite programming problem. Then, using this sum of squares programming problem, we also provide upper and lower estimates for the maximum eigenvalue of general symmetric tensors. These upper and lower estimates can be calculated in terms of the entries of the tensor. Numerical examples are also presented to illustrate the significance of the results. Symmetric tensors Maximum eigenvalue Sum of squares of polynomials Semi-definite programming problem Li, Guoyin aut Qi, Liqun aut Song, Yisheng aut Enthalten in Journal of optimization theory and applications Springer US, 1967 158(2013), 3 vom: 02. März, Seite 717-738 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:158 year:2013 number:3 day:02 month:03 pages:717-738 https://doi.org/10.1007/s10957-013-0293-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 6420 SA 6420 AR 158 2013 3 02 03 717-738 |
spelling |
10.1007/s10957-013-0293-9 doi (DE-627)OLC2026495106 (DE-He213)s10957-013-0293-9-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Hu, Shenglong verfasserin aut Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type theorem. In this paper, we consider a new class of tensors called essentially nonnegative tensors, which extends the concept of nonnegative tensors, and examine the maximum eigenvalue of an essentially nonnegative tensor using the polynomial optimization techniques. We first establish that finding the maximum eigenvalue of an essentially nonnegative symmetric tensor is equivalent to solving a sum of squares of polynomials (SOS) optimization problem, which, in its turn, can be equivalently rewritten as a semi-definite programming problem. Then, using this sum of squares programming problem, we also provide upper and lower estimates for the maximum eigenvalue of general symmetric tensors. These upper and lower estimates can be calculated in terms of the entries of the tensor. Numerical examples are also presented to illustrate the significance of the results. Symmetric tensors Maximum eigenvalue Sum of squares of polynomials Semi-definite programming problem Li, Guoyin aut Qi, Liqun aut Song, Yisheng aut Enthalten in Journal of optimization theory and applications Springer US, 1967 158(2013), 3 vom: 02. März, Seite 717-738 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:158 year:2013 number:3 day:02 month:03 pages:717-738 https://doi.org/10.1007/s10957-013-0293-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 6420 SA 6420 AR 158 2013 3 02 03 717-738 |
allfields_unstemmed |
10.1007/s10957-013-0293-9 doi (DE-627)OLC2026495106 (DE-He213)s10957-013-0293-9-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Hu, Shenglong verfasserin aut Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type theorem. In this paper, we consider a new class of tensors called essentially nonnegative tensors, which extends the concept of nonnegative tensors, and examine the maximum eigenvalue of an essentially nonnegative tensor using the polynomial optimization techniques. We first establish that finding the maximum eigenvalue of an essentially nonnegative symmetric tensor is equivalent to solving a sum of squares of polynomials (SOS) optimization problem, which, in its turn, can be equivalently rewritten as a semi-definite programming problem. Then, using this sum of squares programming problem, we also provide upper and lower estimates for the maximum eigenvalue of general symmetric tensors. These upper and lower estimates can be calculated in terms of the entries of the tensor. Numerical examples are also presented to illustrate the significance of the results. Symmetric tensors Maximum eigenvalue Sum of squares of polynomials Semi-definite programming problem Li, Guoyin aut Qi, Liqun aut Song, Yisheng aut Enthalten in Journal of optimization theory and applications Springer US, 1967 158(2013), 3 vom: 02. März, Seite 717-738 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:158 year:2013 number:3 day:02 month:03 pages:717-738 https://doi.org/10.1007/s10957-013-0293-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 6420 SA 6420 AR 158 2013 3 02 03 717-738 |
allfieldsGer |
10.1007/s10957-013-0293-9 doi (DE-627)OLC2026495106 (DE-He213)s10957-013-0293-9-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Hu, Shenglong verfasserin aut Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type theorem. In this paper, we consider a new class of tensors called essentially nonnegative tensors, which extends the concept of nonnegative tensors, and examine the maximum eigenvalue of an essentially nonnegative tensor using the polynomial optimization techniques. We first establish that finding the maximum eigenvalue of an essentially nonnegative symmetric tensor is equivalent to solving a sum of squares of polynomials (SOS) optimization problem, which, in its turn, can be equivalently rewritten as a semi-definite programming problem. Then, using this sum of squares programming problem, we also provide upper and lower estimates for the maximum eigenvalue of general symmetric tensors. These upper and lower estimates can be calculated in terms of the entries of the tensor. Numerical examples are also presented to illustrate the significance of the results. Symmetric tensors Maximum eigenvalue Sum of squares of polynomials Semi-definite programming problem Li, Guoyin aut Qi, Liqun aut Song, Yisheng aut Enthalten in Journal of optimization theory and applications Springer US, 1967 158(2013), 3 vom: 02. März, Seite 717-738 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:158 year:2013 number:3 day:02 month:03 pages:717-738 https://doi.org/10.1007/s10957-013-0293-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 6420 SA 6420 AR 158 2013 3 02 03 717-738 |
allfieldsSound |
10.1007/s10957-013-0293-9 doi (DE-627)OLC2026495106 (DE-He213)s10957-013-0293-9-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Hu, Shenglong verfasserin aut Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type theorem. In this paper, we consider a new class of tensors called essentially nonnegative tensors, which extends the concept of nonnegative tensors, and examine the maximum eigenvalue of an essentially nonnegative tensor using the polynomial optimization techniques. We first establish that finding the maximum eigenvalue of an essentially nonnegative symmetric tensor is equivalent to solving a sum of squares of polynomials (SOS) optimization problem, which, in its turn, can be equivalently rewritten as a semi-definite programming problem. Then, using this sum of squares programming problem, we also provide upper and lower estimates for the maximum eigenvalue of general symmetric tensors. These upper and lower estimates can be calculated in terms of the entries of the tensor. Numerical examples are also presented to illustrate the significance of the results. Symmetric tensors Maximum eigenvalue Sum of squares of polynomials Semi-definite programming problem Li, Guoyin aut Qi, Liqun aut Song, Yisheng aut Enthalten in Journal of optimization theory and applications Springer US, 1967 158(2013), 3 vom: 02. März, Seite 717-738 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:158 year:2013 number:3 day:02 month:03 pages:717-738 https://doi.org/10.1007/s10957-013-0293-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 SA 6420 SA 6420 AR 158 2013 3 02 03 717-738 |
language |
English |
source |
Enthalten in Journal of optimization theory and applications 158(2013), 3 vom: 02. März, Seite 717-738 volume:158 year:2013 number:3 day:02 month:03 pages:717-738 |
sourceStr |
Enthalten in Journal of optimization theory and applications 158(2013), 3 vom: 02. März, Seite 717-738 volume:158 year:2013 number:3 day:02 month:03 pages:717-738 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Symmetric tensors Maximum eigenvalue Sum of squares of polynomials Semi-definite programming problem |
dewey-raw |
330 |
isfreeaccess_bool |
false |
container_title |
Journal of optimization theory and applications |
authorswithroles_txt_mv |
Hu, Shenglong @@aut@@ Li, Guoyin @@aut@@ Qi, Liqun @@aut@@ Song, Yisheng @@aut@@ |
publishDateDaySort_date |
2013-03-02T00:00:00Z |
hierarchy_top_id |
129973467 |
dewey-sort |
3330 |
id |
OLC2026495106 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026495106</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503155155.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10957-013-0293-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026495106</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10957-013-0293-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, Shenglong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type theorem. In this paper, we consider a new class of tensors called essentially nonnegative tensors, which extends the concept of nonnegative tensors, and examine the maximum eigenvalue of an essentially nonnegative tensor using the polynomial optimization techniques. We first establish that finding the maximum eigenvalue of an essentially nonnegative symmetric tensor is equivalent to solving a sum of squares of polynomials (SOS) optimization problem, which, in its turn, can be equivalently rewritten as a semi-definite programming problem. Then, using this sum of squares programming problem, we also provide upper and lower estimates for the maximum eigenvalue of general symmetric tensors. These upper and lower estimates can be calculated in terms of the entries of the tensor. Numerical examples are also presented to illustrate the significance of the results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetric tensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximum eigenvalue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sum of squares of polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semi-definite programming problem</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Guoyin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Liqun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Yisheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of optimization theory and applications</subfield><subfield code="d">Springer US, 1967</subfield><subfield code="g">158(2013), 3 vom: 02. März, Seite 717-738</subfield><subfield code="w">(DE-627)129973467</subfield><subfield code="w">(DE-600)410689-1</subfield><subfield code="w">(DE-576)015536602</subfield><subfield code="x">0022-3239</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:158</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:3</subfield><subfield code="g">day:02</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:717-738</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10957-013-0293-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">158</subfield><subfield code="j">2013</subfield><subfield code="e">3</subfield><subfield code="b">02</subfield><subfield code="c">03</subfield><subfield code="h">717-738</subfield></datafield></record></collection>
|
author |
Hu, Shenglong |
spellingShingle |
Hu, Shenglong ddc 330 ssgn 17,1 rvk SA 6420 misc Symmetric tensors misc Maximum eigenvalue misc Sum of squares of polynomials misc Semi-definite programming problem Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming |
authorStr |
Hu, Shenglong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129973467 |
format |
Article |
dewey-ones |
330 - Economics 510 - Mathematics 000 - Computer science, information & general works |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-3239 |
topic_title |
330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming Symmetric tensors Maximum eigenvalue Sum of squares of polynomials Semi-definite programming problem |
topic |
ddc 330 ssgn 17,1 rvk SA 6420 misc Symmetric tensors misc Maximum eigenvalue misc Sum of squares of polynomials misc Semi-definite programming problem |
topic_unstemmed |
ddc 330 ssgn 17,1 rvk SA 6420 misc Symmetric tensors misc Maximum eigenvalue misc Sum of squares of polynomials misc Semi-definite programming problem |
topic_browse |
ddc 330 ssgn 17,1 rvk SA 6420 misc Symmetric tensors misc Maximum eigenvalue misc Sum of squares of polynomials misc Semi-definite programming problem |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of optimization theory and applications |
hierarchy_parent_id |
129973467 |
dewey-tens |
330 - Economics 510 - Mathematics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of optimization theory and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 |
title |
Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming |
ctrlnum |
(DE-627)OLC2026495106 (DE-He213)s10957-013-0293-9-p |
title_full |
Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming |
author_sort |
Hu, Shenglong |
journal |
Journal of optimization theory and applications |
journalStr |
Journal of optimization theory and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
717 |
author_browse |
Hu, Shenglong Li, Guoyin Qi, Liqun Song, Yisheng |
container_volume |
158 |
class |
330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk |
format_se |
Aufsätze |
author-letter |
Hu, Shenglong |
doi_str_mv |
10.1007/s10957-013-0293-9 |
dewey-full |
330 510 000 |
title_sort |
finding the maximum eigenvalue of essentially nonnegative symmetric tensors via sum of squares programming |
title_auth |
Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming |
abstract |
Abstract Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type theorem. In this paper, we consider a new class of tensors called essentially nonnegative tensors, which extends the concept of nonnegative tensors, and examine the maximum eigenvalue of an essentially nonnegative tensor using the polynomial optimization techniques. We first establish that finding the maximum eigenvalue of an essentially nonnegative symmetric tensor is equivalent to solving a sum of squares of polynomials (SOS) optimization problem, which, in its turn, can be equivalently rewritten as a semi-definite programming problem. Then, using this sum of squares programming problem, we also provide upper and lower estimates for the maximum eigenvalue of general symmetric tensors. These upper and lower estimates can be calculated in terms of the entries of the tensor. Numerical examples are also presented to illustrate the significance of the results. © Springer Science+Business Media New York 2013 |
abstractGer |
Abstract Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type theorem. In this paper, we consider a new class of tensors called essentially nonnegative tensors, which extends the concept of nonnegative tensors, and examine the maximum eigenvalue of an essentially nonnegative tensor using the polynomial optimization techniques. We first establish that finding the maximum eigenvalue of an essentially nonnegative symmetric tensor is equivalent to solving a sum of squares of polynomials (SOS) optimization problem, which, in its turn, can be equivalently rewritten as a semi-definite programming problem. Then, using this sum of squares programming problem, we also provide upper and lower estimates for the maximum eigenvalue of general symmetric tensors. These upper and lower estimates can be calculated in terms of the entries of the tensor. Numerical examples are also presented to illustrate the significance of the results. © Springer Science+Business Media New York 2013 |
abstract_unstemmed |
Abstract Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type theorem. In this paper, we consider a new class of tensors called essentially nonnegative tensors, which extends the concept of nonnegative tensors, and examine the maximum eigenvalue of an essentially nonnegative tensor using the polynomial optimization techniques. We first establish that finding the maximum eigenvalue of an essentially nonnegative symmetric tensor is equivalent to solving a sum of squares of polynomials (SOS) optimization problem, which, in its turn, can be equivalently rewritten as a semi-definite programming problem. Then, using this sum of squares programming problem, we also provide upper and lower estimates for the maximum eigenvalue of general symmetric tensors. These upper and lower estimates can be calculated in terms of the entries of the tensor. Numerical examples are also presented to illustrate the significance of the results. © Springer Science+Business Media New York 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_32 GBV_ILN_40 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4266 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4325 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming |
url |
https://doi.org/10.1007/s10957-013-0293-9 |
remote_bool |
false |
author2 |
Li, Guoyin Qi, Liqun Song, Yisheng |
author2Str |
Li, Guoyin Qi, Liqun Song, Yisheng |
ppnlink |
129973467 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10957-013-0293-9 |
up_date |
2024-07-04T04:05:52.616Z |
_version_ |
1803619876335517696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026495106</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503155155.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10957-013-0293-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026495106</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10957-013-0293-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, Shenglong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type theorem. In this paper, we consider a new class of tensors called essentially nonnegative tensors, which extends the concept of nonnegative tensors, and examine the maximum eigenvalue of an essentially nonnegative tensor using the polynomial optimization techniques. We first establish that finding the maximum eigenvalue of an essentially nonnegative symmetric tensor is equivalent to solving a sum of squares of polynomials (SOS) optimization problem, which, in its turn, can be equivalently rewritten as a semi-definite programming problem. Then, using this sum of squares programming problem, we also provide upper and lower estimates for the maximum eigenvalue of general symmetric tensors. These upper and lower estimates can be calculated in terms of the entries of the tensor. Numerical examples are also presented to illustrate the significance of the results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetric tensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximum eigenvalue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sum of squares of polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semi-definite programming problem</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Guoyin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Liqun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Yisheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of optimization theory and applications</subfield><subfield code="d">Springer US, 1967</subfield><subfield code="g">158(2013), 3 vom: 02. März, Seite 717-738</subfield><subfield code="w">(DE-627)129973467</subfield><subfield code="w">(DE-600)410689-1</subfield><subfield code="w">(DE-576)015536602</subfield><subfield code="x">0022-3239</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:158</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:3</subfield><subfield code="g">day:02</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:717-738</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10957-013-0293-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">158</subfield><subfield code="j">2013</subfield><subfield code="e">3</subfield><subfield code="b">02</subfield><subfield code="c">03</subfield><subfield code="h">717-738</subfield></datafield></record></collection>
|
score |
7.398978 |