A Modified Generalized Newton Method for Absolute Value Equations
Abstract In this paper, a modified generalized Newton method is presented to solve absolute value equations, when all the singular values of the system matrix exceed 1. The convergence properties of the proposed method are given.
Autor*in: |
Li, Cui-Xia [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer Science+Business Media New York 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of optimization theory and applications - Springer US, 1967, 170(2016), 3 vom: 31. Mai, Seite 1055-1059 |
---|---|
Übergeordnetes Werk: |
volume:170 ; year:2016 ; number:3 ; day:31 ; month:05 ; pages:1055-1059 |
Links: |
---|
DOI / URN: |
10.1007/s10957-016-0956-4 |
---|
Katalog-ID: |
OLC2026501661 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026501661 | ||
003 | DE-627 | ||
005 | 20230503155659.0 | ||
007 | tu | ||
008 | 200819s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10957-016-0956-4 |2 doi | |
035 | |a (DE-627)OLC2026501661 | ||
035 | |a (DE-He213)s10957-016-0956-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 330 |a 510 |a 000 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 6420 |q VZ |2 rvk | ||
084 | |a SA 6420 |q VZ |2 rvk | ||
100 | 1 | |a Li, Cui-Xia |e verfasserin |4 aut | |
245 | 1 | 0 | |a A Modified Generalized Newton Method for Absolute Value Equations |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2016 | ||
520 | |a Abstract In this paper, a modified generalized Newton method is presented to solve absolute value equations, when all the singular values of the system matrix exceed 1. The convergence properties of the proposed method are given. | ||
650 | 4 | |a Absolute value equation | |
650 | 4 | |a Generalized Newton method | |
650 | 4 | |a Convergence | |
773 | 0 | 8 | |i Enthalten in |t Journal of optimization theory and applications |d Springer US, 1967 |g 170(2016), 3 vom: 31. Mai, Seite 1055-1059 |w (DE-627)129973467 |w (DE-600)410689-1 |w (DE-576)015536602 |x 0022-3239 |7 nnns |
773 | 1 | 8 | |g volume:170 |g year:2016 |g number:3 |g day:31 |g month:05 |g pages:1055-1059 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10957-016-0956-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
936 | r | v | |a SA 6420 |
936 | r | v | |a SA 6420 |
951 | |a AR | ||
952 | |d 170 |j 2016 |e 3 |b 31 |c 05 |h 1055-1059 |
author_variant |
c x l cxl |
---|---|
matchkey_str |
article:00223239:2016----::mdfegnrlzdetnehdoaslt |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s10957-016-0956-4 doi (DE-627)OLC2026501661 (DE-He213)s10957-016-0956-4-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Li, Cui-Xia verfasserin aut A Modified Generalized Newton Method for Absolute Value Equations 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract In this paper, a modified generalized Newton method is presented to solve absolute value equations, when all the singular values of the system matrix exceed 1. The convergence properties of the proposed method are given. Absolute value equation Generalized Newton method Convergence Enthalten in Journal of optimization theory and applications Springer US, 1967 170(2016), 3 vom: 31. Mai, Seite 1055-1059 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:170 year:2016 number:3 day:31 month:05 pages:1055-1059 https://doi.org/10.1007/s10957-016-0956-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4266 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4323 SA 6420 SA 6420 AR 170 2016 3 31 05 1055-1059 |
spelling |
10.1007/s10957-016-0956-4 doi (DE-627)OLC2026501661 (DE-He213)s10957-016-0956-4-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Li, Cui-Xia verfasserin aut A Modified Generalized Newton Method for Absolute Value Equations 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract In this paper, a modified generalized Newton method is presented to solve absolute value equations, when all the singular values of the system matrix exceed 1. The convergence properties of the proposed method are given. Absolute value equation Generalized Newton method Convergence Enthalten in Journal of optimization theory and applications Springer US, 1967 170(2016), 3 vom: 31. Mai, Seite 1055-1059 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:170 year:2016 number:3 day:31 month:05 pages:1055-1059 https://doi.org/10.1007/s10957-016-0956-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4266 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4323 SA 6420 SA 6420 AR 170 2016 3 31 05 1055-1059 |
allfields_unstemmed |
10.1007/s10957-016-0956-4 doi (DE-627)OLC2026501661 (DE-He213)s10957-016-0956-4-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Li, Cui-Xia verfasserin aut A Modified Generalized Newton Method for Absolute Value Equations 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract In this paper, a modified generalized Newton method is presented to solve absolute value equations, when all the singular values of the system matrix exceed 1. The convergence properties of the proposed method are given. Absolute value equation Generalized Newton method Convergence Enthalten in Journal of optimization theory and applications Springer US, 1967 170(2016), 3 vom: 31. Mai, Seite 1055-1059 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:170 year:2016 number:3 day:31 month:05 pages:1055-1059 https://doi.org/10.1007/s10957-016-0956-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4266 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4323 SA 6420 SA 6420 AR 170 2016 3 31 05 1055-1059 |
allfieldsGer |
10.1007/s10957-016-0956-4 doi (DE-627)OLC2026501661 (DE-He213)s10957-016-0956-4-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Li, Cui-Xia verfasserin aut A Modified Generalized Newton Method for Absolute Value Equations 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract In this paper, a modified generalized Newton method is presented to solve absolute value equations, when all the singular values of the system matrix exceed 1. The convergence properties of the proposed method are given. Absolute value equation Generalized Newton method Convergence Enthalten in Journal of optimization theory and applications Springer US, 1967 170(2016), 3 vom: 31. Mai, Seite 1055-1059 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:170 year:2016 number:3 day:31 month:05 pages:1055-1059 https://doi.org/10.1007/s10957-016-0956-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4266 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4323 SA 6420 SA 6420 AR 170 2016 3 31 05 1055-1059 |
allfieldsSound |
10.1007/s10957-016-0956-4 doi (DE-627)OLC2026501661 (DE-He213)s10957-016-0956-4-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Li, Cui-Xia verfasserin aut A Modified Generalized Newton Method for Absolute Value Equations 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract In this paper, a modified generalized Newton method is presented to solve absolute value equations, when all the singular values of the system matrix exceed 1. The convergence properties of the proposed method are given. Absolute value equation Generalized Newton method Convergence Enthalten in Journal of optimization theory and applications Springer US, 1967 170(2016), 3 vom: 31. Mai, Seite 1055-1059 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:170 year:2016 number:3 day:31 month:05 pages:1055-1059 https://doi.org/10.1007/s10957-016-0956-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4266 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4323 SA 6420 SA 6420 AR 170 2016 3 31 05 1055-1059 |
language |
English |
source |
Enthalten in Journal of optimization theory and applications 170(2016), 3 vom: 31. Mai, Seite 1055-1059 volume:170 year:2016 number:3 day:31 month:05 pages:1055-1059 |
sourceStr |
Enthalten in Journal of optimization theory and applications 170(2016), 3 vom: 31. Mai, Seite 1055-1059 volume:170 year:2016 number:3 day:31 month:05 pages:1055-1059 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Absolute value equation Generalized Newton method Convergence |
dewey-raw |
330 |
isfreeaccess_bool |
false |
container_title |
Journal of optimization theory and applications |
authorswithroles_txt_mv |
Li, Cui-Xia @@aut@@ |
publishDateDaySort_date |
2016-05-31T00:00:00Z |
hierarchy_top_id |
129973467 |
dewey-sort |
3330 |
id |
OLC2026501661 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026501661</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503155659.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10957-016-0956-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026501661</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10957-016-0956-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Cui-Xia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Modified Generalized Newton Method for Absolute Value Equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, a modified generalized Newton method is presented to solve absolute value equations, when all the singular values of the system matrix exceed 1. The convergence properties of the proposed method are given.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Absolute value equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalized Newton method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convergence</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of optimization theory and applications</subfield><subfield code="d">Springer US, 1967</subfield><subfield code="g">170(2016), 3 vom: 31. Mai, Seite 1055-1059</subfield><subfield code="w">(DE-627)129973467</subfield><subfield code="w">(DE-600)410689-1</subfield><subfield code="w">(DE-576)015536602</subfield><subfield code="x">0022-3239</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:170</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">day:31</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1055-1059</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10957-016-0956-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">170</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="b">31</subfield><subfield code="c">05</subfield><subfield code="h">1055-1059</subfield></datafield></record></collection>
|
author |
Li, Cui-Xia |
spellingShingle |
Li, Cui-Xia ddc 330 ssgn 17,1 rvk SA 6420 misc Absolute value equation misc Generalized Newton method misc Convergence A Modified Generalized Newton Method for Absolute Value Equations |
authorStr |
Li, Cui-Xia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129973467 |
format |
Article |
dewey-ones |
330 - Economics 510 - Mathematics 000 - Computer science, information & general works |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-3239 |
topic_title |
330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk A Modified Generalized Newton Method for Absolute Value Equations Absolute value equation Generalized Newton method Convergence |
topic |
ddc 330 ssgn 17,1 rvk SA 6420 misc Absolute value equation misc Generalized Newton method misc Convergence |
topic_unstemmed |
ddc 330 ssgn 17,1 rvk SA 6420 misc Absolute value equation misc Generalized Newton method misc Convergence |
topic_browse |
ddc 330 ssgn 17,1 rvk SA 6420 misc Absolute value equation misc Generalized Newton method misc Convergence |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of optimization theory and applications |
hierarchy_parent_id |
129973467 |
dewey-tens |
330 - Economics 510 - Mathematics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of optimization theory and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 |
title |
A Modified Generalized Newton Method for Absolute Value Equations |
ctrlnum |
(DE-627)OLC2026501661 (DE-He213)s10957-016-0956-4-p |
title_full |
A Modified Generalized Newton Method for Absolute Value Equations |
author_sort |
Li, Cui-Xia |
journal |
Journal of optimization theory and applications |
journalStr |
Journal of optimization theory and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1055 |
author_browse |
Li, Cui-Xia |
container_volume |
170 |
class |
330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk |
format_se |
Aufsätze |
author-letter |
Li, Cui-Xia |
doi_str_mv |
10.1007/s10957-016-0956-4 |
dewey-full |
330 510 000 |
title_sort |
a modified generalized newton method for absolute value equations |
title_auth |
A Modified Generalized Newton Method for Absolute Value Equations |
abstract |
Abstract In this paper, a modified generalized Newton method is presented to solve absolute value equations, when all the singular values of the system matrix exceed 1. The convergence properties of the proposed method are given. © Springer Science+Business Media New York 2016 |
abstractGer |
Abstract In this paper, a modified generalized Newton method is presented to solve absolute value equations, when all the singular values of the system matrix exceed 1. The convergence properties of the proposed method are given. © Springer Science+Business Media New York 2016 |
abstract_unstemmed |
Abstract In this paper, a modified generalized Newton method is presented to solve absolute value equations, when all the singular values of the system matrix exceed 1. The convergence properties of the proposed method are given. © Springer Science+Business Media New York 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_65 GBV_ILN_70 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4266 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4323 |
container_issue |
3 |
title_short |
A Modified Generalized Newton Method for Absolute Value Equations |
url |
https://doi.org/10.1007/s10957-016-0956-4 |
remote_bool |
false |
ppnlink |
129973467 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10957-016-0956-4 |
up_date |
2024-07-04T04:06:47.477Z |
_version_ |
1803619933868785664 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026501661</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503155659.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10957-016-0956-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026501661</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10957-016-0956-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Cui-Xia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Modified Generalized Newton Method for Absolute Value Equations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, a modified generalized Newton method is presented to solve absolute value equations, when all the singular values of the system matrix exceed 1. The convergence properties of the proposed method are given.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Absolute value equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalized Newton method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convergence</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of optimization theory and applications</subfield><subfield code="d">Springer US, 1967</subfield><subfield code="g">170(2016), 3 vom: 31. Mai, Seite 1055-1059</subfield><subfield code="w">(DE-627)129973467</subfield><subfield code="w">(DE-600)410689-1</subfield><subfield code="w">(DE-576)015536602</subfield><subfield code="x">0022-3239</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:170</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">day:31</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1055-1059</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10957-016-0956-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">170</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="b">31</subfield><subfield code="c">05</subfield><subfield code="h">1055-1059</subfield></datafield></record></collection>
|
score |
7.4022093 |