Lyapunov Stability of Differential Inclusions Involving Prox-Regular Sets via Maximal Monotone Operators
Abstract In this paper, we study the existence and the stability in the sense of Lyapunov of differential inclusions governed by the normal cone to a given prox-regular set, which is subject to a Lipschitzian perturbation. We prove that such apparently more general non-smooth dynamics can be indeed...
Ausführliche Beschreibung
Autor*in: |
Adly, Samir [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of optimization theory and applications - Springer US, 1967, 182(2018), 3 vom: 23. Nov., Seite 906-934 |
---|---|
Übergeordnetes Werk: |
volume:182 ; year:2018 ; number:3 ; day:23 ; month:11 ; pages:906-934 |
Links: |
---|
DOI / URN: |
10.1007/s10957-018-1446-7 |
---|
Katalog-ID: |
OLC2026507503 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026507503 | ||
003 | DE-627 | ||
005 | 20230503155747.0 | ||
007 | tu | ||
008 | 200819s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10957-018-1446-7 |2 doi | |
035 | |a (DE-627)OLC2026507503 | ||
035 | |a (DE-He213)s10957-018-1446-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 330 |a 510 |a 000 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a SA 6420 |q VZ |2 rvk | ||
084 | |a SA 6420 |q VZ |2 rvk | ||
100 | 1 | |a Adly, Samir |e verfasserin |4 aut | |
245 | 1 | 0 | |a Lyapunov Stability of Differential Inclusions Involving Prox-Regular Sets via Maximal Monotone Operators |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2018 | ||
520 | |a Abstract In this paper, we study the existence and the stability in the sense of Lyapunov of differential inclusions governed by the normal cone to a given prox-regular set, which is subject to a Lipschitzian perturbation. We prove that such apparently more general non-smooth dynamics can be indeed remodeled into the classical theory of differential inclusions, involving maximal monotone operators. This result is new in the literature. It permits to make use of the rich and abundant achievements in the class of monotone operators to study different stability aspects, and to give new proofs for the existence, the continuity, and the differentiability of solutions. This going back and forth between these two models of differential inclusions is made possible thanks to a viability result for maximal monotone operators. Applications will concern Luenberger-like observers associated with these differential inclusions. | ||
650 | 4 | |a Differential inclusions | |
650 | 4 | |a Prox-regular sets | |
650 | 4 | |a Maximal monotone operators | |
650 | 4 | |a Lyapunov functions | |
650 | 4 | |a -Lyapunov pairs | |
650 | 4 | |a Invariant sets | |
650 | 4 | |a Observer designs | |
700 | 1 | |a Hantoute, Abderrahim |0 (orcid)0000-0002-7347-048X |4 aut | |
700 | 1 | |a Nguyen, Bao Tran |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of optimization theory and applications |d Springer US, 1967 |g 182(2018), 3 vom: 23. Nov., Seite 906-934 |w (DE-627)129973467 |w (DE-600)410689-1 |w (DE-576)015536602 |x 0022-3239 |7 nnns |
773 | 1 | 8 | |g volume:182 |g year:2018 |g number:3 |g day:23 |g month:11 |g pages:906-934 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10957-018-1446-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4323 | ||
936 | r | v | |a SA 6420 |
936 | r | v | |a SA 6420 |
951 | |a AR | ||
952 | |d 182 |j 2018 |e 3 |b 23 |c 11 |h 906-934 |
author_variant |
s a sa a h ah b t n bt btn |
---|---|
matchkey_str |
article:00223239:2018----::ypnvtbltodfeetaicuinivligrxeuastva |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s10957-018-1446-7 doi (DE-627)OLC2026507503 (DE-He213)s10957-018-1446-7-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Adly, Samir verfasserin aut Lyapunov Stability of Differential Inclusions Involving Prox-Regular Sets via Maximal Monotone Operators 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In this paper, we study the existence and the stability in the sense of Lyapunov of differential inclusions governed by the normal cone to a given prox-regular set, which is subject to a Lipschitzian perturbation. We prove that such apparently more general non-smooth dynamics can be indeed remodeled into the classical theory of differential inclusions, involving maximal monotone operators. This result is new in the literature. It permits to make use of the rich and abundant achievements in the class of monotone operators to study different stability aspects, and to give new proofs for the existence, the continuity, and the differentiability of solutions. This going back and forth between these two models of differential inclusions is made possible thanks to a viability result for maximal monotone operators. Applications will concern Luenberger-like observers associated with these differential inclusions. Differential inclusions Prox-regular sets Maximal monotone operators Lyapunov functions -Lyapunov pairs Invariant sets Observer designs Hantoute, Abderrahim (orcid)0000-0002-7347-048X aut Nguyen, Bao Tran aut Enthalten in Journal of optimization theory and applications Springer US, 1967 182(2018), 3 vom: 23. Nov., Seite 906-934 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:182 year:2018 number:3 day:23 month:11 pages:906-934 https://doi.org/10.1007/s10957-018-1446-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2030 GBV_ILN_4027 GBV_ILN_4323 SA 6420 SA 6420 AR 182 2018 3 23 11 906-934 |
spelling |
10.1007/s10957-018-1446-7 doi (DE-627)OLC2026507503 (DE-He213)s10957-018-1446-7-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Adly, Samir verfasserin aut Lyapunov Stability of Differential Inclusions Involving Prox-Regular Sets via Maximal Monotone Operators 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In this paper, we study the existence and the stability in the sense of Lyapunov of differential inclusions governed by the normal cone to a given prox-regular set, which is subject to a Lipschitzian perturbation. We prove that such apparently more general non-smooth dynamics can be indeed remodeled into the classical theory of differential inclusions, involving maximal monotone operators. This result is new in the literature. It permits to make use of the rich and abundant achievements in the class of monotone operators to study different stability aspects, and to give new proofs for the existence, the continuity, and the differentiability of solutions. This going back and forth between these two models of differential inclusions is made possible thanks to a viability result for maximal monotone operators. Applications will concern Luenberger-like observers associated with these differential inclusions. Differential inclusions Prox-regular sets Maximal monotone operators Lyapunov functions -Lyapunov pairs Invariant sets Observer designs Hantoute, Abderrahim (orcid)0000-0002-7347-048X aut Nguyen, Bao Tran aut Enthalten in Journal of optimization theory and applications Springer US, 1967 182(2018), 3 vom: 23. Nov., Seite 906-934 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:182 year:2018 number:3 day:23 month:11 pages:906-934 https://doi.org/10.1007/s10957-018-1446-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2030 GBV_ILN_4027 GBV_ILN_4323 SA 6420 SA 6420 AR 182 2018 3 23 11 906-934 |
allfields_unstemmed |
10.1007/s10957-018-1446-7 doi (DE-627)OLC2026507503 (DE-He213)s10957-018-1446-7-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Adly, Samir verfasserin aut Lyapunov Stability of Differential Inclusions Involving Prox-Regular Sets via Maximal Monotone Operators 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In this paper, we study the existence and the stability in the sense of Lyapunov of differential inclusions governed by the normal cone to a given prox-regular set, which is subject to a Lipschitzian perturbation. We prove that such apparently more general non-smooth dynamics can be indeed remodeled into the classical theory of differential inclusions, involving maximal monotone operators. This result is new in the literature. It permits to make use of the rich and abundant achievements in the class of monotone operators to study different stability aspects, and to give new proofs for the existence, the continuity, and the differentiability of solutions. This going back and forth between these two models of differential inclusions is made possible thanks to a viability result for maximal monotone operators. Applications will concern Luenberger-like observers associated with these differential inclusions. Differential inclusions Prox-regular sets Maximal monotone operators Lyapunov functions -Lyapunov pairs Invariant sets Observer designs Hantoute, Abderrahim (orcid)0000-0002-7347-048X aut Nguyen, Bao Tran aut Enthalten in Journal of optimization theory and applications Springer US, 1967 182(2018), 3 vom: 23. Nov., Seite 906-934 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:182 year:2018 number:3 day:23 month:11 pages:906-934 https://doi.org/10.1007/s10957-018-1446-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2030 GBV_ILN_4027 GBV_ILN_4323 SA 6420 SA 6420 AR 182 2018 3 23 11 906-934 |
allfieldsGer |
10.1007/s10957-018-1446-7 doi (DE-627)OLC2026507503 (DE-He213)s10957-018-1446-7-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Adly, Samir verfasserin aut Lyapunov Stability of Differential Inclusions Involving Prox-Regular Sets via Maximal Monotone Operators 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In this paper, we study the existence and the stability in the sense of Lyapunov of differential inclusions governed by the normal cone to a given prox-regular set, which is subject to a Lipschitzian perturbation. We prove that such apparently more general non-smooth dynamics can be indeed remodeled into the classical theory of differential inclusions, involving maximal monotone operators. This result is new in the literature. It permits to make use of the rich and abundant achievements in the class of monotone operators to study different stability aspects, and to give new proofs for the existence, the continuity, and the differentiability of solutions. This going back and forth between these two models of differential inclusions is made possible thanks to a viability result for maximal monotone operators. Applications will concern Luenberger-like observers associated with these differential inclusions. Differential inclusions Prox-regular sets Maximal monotone operators Lyapunov functions -Lyapunov pairs Invariant sets Observer designs Hantoute, Abderrahim (orcid)0000-0002-7347-048X aut Nguyen, Bao Tran aut Enthalten in Journal of optimization theory and applications Springer US, 1967 182(2018), 3 vom: 23. Nov., Seite 906-934 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:182 year:2018 number:3 day:23 month:11 pages:906-934 https://doi.org/10.1007/s10957-018-1446-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2030 GBV_ILN_4027 GBV_ILN_4323 SA 6420 SA 6420 AR 182 2018 3 23 11 906-934 |
allfieldsSound |
10.1007/s10957-018-1446-7 doi (DE-627)OLC2026507503 (DE-He213)s10957-018-1446-7-p DE-627 ger DE-627 rakwb eng 330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk SA 6420 VZ rvk Adly, Samir verfasserin aut Lyapunov Stability of Differential Inclusions Involving Prox-Regular Sets via Maximal Monotone Operators 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In this paper, we study the existence and the stability in the sense of Lyapunov of differential inclusions governed by the normal cone to a given prox-regular set, which is subject to a Lipschitzian perturbation. We prove that such apparently more general non-smooth dynamics can be indeed remodeled into the classical theory of differential inclusions, involving maximal monotone operators. This result is new in the literature. It permits to make use of the rich and abundant achievements in the class of monotone operators to study different stability aspects, and to give new proofs for the existence, the continuity, and the differentiability of solutions. This going back and forth between these two models of differential inclusions is made possible thanks to a viability result for maximal monotone operators. Applications will concern Luenberger-like observers associated with these differential inclusions. Differential inclusions Prox-regular sets Maximal monotone operators Lyapunov functions -Lyapunov pairs Invariant sets Observer designs Hantoute, Abderrahim (orcid)0000-0002-7347-048X aut Nguyen, Bao Tran aut Enthalten in Journal of optimization theory and applications Springer US, 1967 182(2018), 3 vom: 23. Nov., Seite 906-934 (DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 0022-3239 nnns volume:182 year:2018 number:3 day:23 month:11 pages:906-934 https://doi.org/10.1007/s10957-018-1446-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2030 GBV_ILN_4027 GBV_ILN_4323 SA 6420 SA 6420 AR 182 2018 3 23 11 906-934 |
language |
English |
source |
Enthalten in Journal of optimization theory and applications 182(2018), 3 vom: 23. Nov., Seite 906-934 volume:182 year:2018 number:3 day:23 month:11 pages:906-934 |
sourceStr |
Enthalten in Journal of optimization theory and applications 182(2018), 3 vom: 23. Nov., Seite 906-934 volume:182 year:2018 number:3 day:23 month:11 pages:906-934 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Differential inclusions Prox-regular sets Maximal monotone operators Lyapunov functions -Lyapunov pairs Invariant sets Observer designs |
dewey-raw |
330 |
isfreeaccess_bool |
false |
container_title |
Journal of optimization theory and applications |
authorswithroles_txt_mv |
Adly, Samir @@aut@@ Hantoute, Abderrahim @@aut@@ Nguyen, Bao Tran @@aut@@ |
publishDateDaySort_date |
2018-11-23T00:00:00Z |
hierarchy_top_id |
129973467 |
dewey-sort |
3330 |
id |
OLC2026507503 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026507503</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503155747.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10957-018-1446-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026507503</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10957-018-1446-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adly, Samir</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lyapunov Stability of Differential Inclusions Involving Prox-Regular Sets via Maximal Monotone Operators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we study the existence and the stability in the sense of Lyapunov of differential inclusions governed by the normal cone to a given prox-regular set, which is subject to a Lipschitzian perturbation. We prove that such apparently more general non-smooth dynamics can be indeed remodeled into the classical theory of differential inclusions, involving maximal monotone operators. This result is new in the literature. It permits to make use of the rich and abundant achievements in the class of monotone operators to study different stability aspects, and to give new proofs for the existence, the continuity, and the differentiability of solutions. This going back and forth between these two models of differential inclusions is made possible thanks to a viability result for maximal monotone operators. Applications will concern Luenberger-like observers associated with these differential inclusions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential inclusions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prox-regular sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximal monotone operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Lyapunov pairs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariant sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Observer designs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hantoute, Abderrahim</subfield><subfield code="0">(orcid)0000-0002-7347-048X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nguyen, Bao Tran</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of optimization theory and applications</subfield><subfield code="d">Springer US, 1967</subfield><subfield code="g">182(2018), 3 vom: 23. Nov., Seite 906-934</subfield><subfield code="w">(DE-627)129973467</subfield><subfield code="w">(DE-600)410689-1</subfield><subfield code="w">(DE-576)015536602</subfield><subfield code="x">0022-3239</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:182</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:3</subfield><subfield code="g">day:23</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:906-934</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10957-018-1446-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">182</subfield><subfield code="j">2018</subfield><subfield code="e">3</subfield><subfield code="b">23</subfield><subfield code="c">11</subfield><subfield code="h">906-934</subfield></datafield></record></collection>
|
author |
Adly, Samir |
spellingShingle |
Adly, Samir ddc 330 ssgn 17,1 rvk SA 6420 misc Differential inclusions misc Prox-regular sets misc Maximal monotone operators misc Lyapunov functions misc -Lyapunov pairs misc Invariant sets misc Observer designs Lyapunov Stability of Differential Inclusions Involving Prox-Regular Sets via Maximal Monotone Operators |
authorStr |
Adly, Samir |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129973467 |
format |
Article |
dewey-ones |
330 - Economics 510 - Mathematics 000 - Computer science, information & general works |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-3239 |
topic_title |
330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk Lyapunov Stability of Differential Inclusions Involving Prox-Regular Sets via Maximal Monotone Operators Differential inclusions Prox-regular sets Maximal monotone operators Lyapunov functions -Lyapunov pairs Invariant sets Observer designs |
topic |
ddc 330 ssgn 17,1 rvk SA 6420 misc Differential inclusions misc Prox-regular sets misc Maximal monotone operators misc Lyapunov functions misc -Lyapunov pairs misc Invariant sets misc Observer designs |
topic_unstemmed |
ddc 330 ssgn 17,1 rvk SA 6420 misc Differential inclusions misc Prox-regular sets misc Maximal monotone operators misc Lyapunov functions misc -Lyapunov pairs misc Invariant sets misc Observer designs |
topic_browse |
ddc 330 ssgn 17,1 rvk SA 6420 misc Differential inclusions misc Prox-regular sets misc Maximal monotone operators misc Lyapunov functions misc -Lyapunov pairs misc Invariant sets misc Observer designs |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of optimization theory and applications |
hierarchy_parent_id |
129973467 |
dewey-tens |
330 - Economics 510 - Mathematics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of optimization theory and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129973467 (DE-600)410689-1 (DE-576)015536602 |
title |
Lyapunov Stability of Differential Inclusions Involving Prox-Regular Sets via Maximal Monotone Operators |
ctrlnum |
(DE-627)OLC2026507503 (DE-He213)s10957-018-1446-7-p |
title_full |
Lyapunov Stability of Differential Inclusions Involving Prox-Regular Sets via Maximal Monotone Operators |
author_sort |
Adly, Samir |
journal |
Journal of optimization theory and applications |
journalStr |
Journal of optimization theory and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
906 |
author_browse |
Adly, Samir Hantoute, Abderrahim Nguyen, Bao Tran |
container_volume |
182 |
class |
330 510 000 VZ 17,1 ssgn SA 6420 VZ rvk |
format_se |
Aufsätze |
author-letter |
Adly, Samir |
doi_str_mv |
10.1007/s10957-018-1446-7 |
normlink |
(ORCID)0000-0002-7347-048X |
normlink_prefix_str_mv |
(orcid)0000-0002-7347-048X |
dewey-full |
330 510 000 |
title_sort |
lyapunov stability of differential inclusions involving prox-regular sets via maximal monotone operators |
title_auth |
Lyapunov Stability of Differential Inclusions Involving Prox-Regular Sets via Maximal Monotone Operators |
abstract |
Abstract In this paper, we study the existence and the stability in the sense of Lyapunov of differential inclusions governed by the normal cone to a given prox-regular set, which is subject to a Lipschitzian perturbation. We prove that such apparently more general non-smooth dynamics can be indeed remodeled into the classical theory of differential inclusions, involving maximal monotone operators. This result is new in the literature. It permits to make use of the rich and abundant achievements in the class of monotone operators to study different stability aspects, and to give new proofs for the existence, the continuity, and the differentiability of solutions. This going back and forth between these two models of differential inclusions is made possible thanks to a viability result for maximal monotone operators. Applications will concern Luenberger-like observers associated with these differential inclusions. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstractGer |
Abstract In this paper, we study the existence and the stability in the sense of Lyapunov of differential inclusions governed by the normal cone to a given prox-regular set, which is subject to a Lipschitzian perturbation. We prove that such apparently more general non-smooth dynamics can be indeed remodeled into the classical theory of differential inclusions, involving maximal monotone operators. This result is new in the literature. It permits to make use of the rich and abundant achievements in the class of monotone operators to study different stability aspects, and to give new proofs for the existence, the continuity, and the differentiability of solutions. This going back and forth between these two models of differential inclusions is made possible thanks to a viability result for maximal monotone operators. Applications will concern Luenberger-like observers associated with these differential inclusions. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract In this paper, we study the existence and the stability in the sense of Lyapunov of differential inclusions governed by the normal cone to a given prox-regular set, which is subject to a Lipschitzian perturbation. We prove that such apparently more general non-smooth dynamics can be indeed remodeled into the classical theory of differential inclusions, involving maximal monotone operators. This result is new in the literature. It permits to make use of the rich and abundant achievements in the class of monotone operators to study different stability aspects, and to give new proofs for the existence, the continuity, and the differentiability of solutions. This going back and forth between these two models of differential inclusions is made possible thanks to a viability result for maximal monotone operators. Applications will concern Luenberger-like observers associated with these differential inclusions. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2030 GBV_ILN_4027 GBV_ILN_4323 |
container_issue |
3 |
title_short |
Lyapunov Stability of Differential Inclusions Involving Prox-Regular Sets via Maximal Monotone Operators |
url |
https://doi.org/10.1007/s10957-018-1446-7 |
remote_bool |
false |
author2 |
Hantoute, Abderrahim Nguyen, Bao Tran |
author2Str |
Hantoute, Abderrahim Nguyen, Bao Tran |
ppnlink |
129973467 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10957-018-1446-7 |
up_date |
2024-07-04T04:07:34.598Z |
_version_ |
1803619983278735360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026507503</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503155747.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10957-018-1446-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026507503</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10957-018-1446-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="a">510</subfield><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 6420</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adly, Samir</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lyapunov Stability of Differential Inclusions Involving Prox-Regular Sets via Maximal Monotone Operators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we study the existence and the stability in the sense of Lyapunov of differential inclusions governed by the normal cone to a given prox-regular set, which is subject to a Lipschitzian perturbation. We prove that such apparently more general non-smooth dynamics can be indeed remodeled into the classical theory of differential inclusions, involving maximal monotone operators. This result is new in the literature. It permits to make use of the rich and abundant achievements in the class of monotone operators to study different stability aspects, and to give new proofs for the existence, the continuity, and the differentiability of solutions. This going back and forth between these two models of differential inclusions is made possible thanks to a viability result for maximal monotone operators. Applications will concern Luenberger-like observers associated with these differential inclusions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential inclusions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prox-regular sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximal monotone operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Lyapunov pairs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariant sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Observer designs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hantoute, Abderrahim</subfield><subfield code="0">(orcid)0000-0002-7347-048X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nguyen, Bao Tran</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of optimization theory and applications</subfield><subfield code="d">Springer US, 1967</subfield><subfield code="g">182(2018), 3 vom: 23. Nov., Seite 906-934</subfield><subfield code="w">(DE-627)129973467</subfield><subfield code="w">(DE-600)410689-1</subfield><subfield code="w">(DE-576)015536602</subfield><subfield code="x">0022-3239</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:182</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:3</subfield><subfield code="g">day:23</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:906-934</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10957-018-1446-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 6420</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">182</subfield><subfield code="j">2018</subfield><subfield code="e">3</subfield><subfield code="b">23</subfield><subfield code="c">11</subfield><subfield code="h">906-934</subfield></datafield></record></collection>
|
score |
7.400939 |