Domination by Positive Narrow Operators
Abstract We prove that each positive operator from a Köthe function-space E(μ) to a Banach lattice F with a narrow majorant is itself narrow provided the norm on F is order continuous. We also prove that every l2-strictly singular regular operator from Lp[0,1], 1≤p < ∞, to a Banach lattice F is n...
Ausführliche Beschreibung
Autor*in: |
Flores, Julio [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2003 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Kluwer Academic Publishers 2003 |
---|
Übergeordnetes Werk: |
Enthalten in: Positivity - Kluwer Academic Publishers, 1997, 7(2003), 4 vom: Dez., Seite 303-321 |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2003 ; number:4 ; month:12 ; pages:303-321 |
Links: |
---|
DOI / URN: |
10.1023/A:1026211909760 |
---|
Katalog-ID: |
OLC2026537585 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026537585 | ||
003 | DE-627 | ||
005 | 20230504012006.0 | ||
007 | tu | ||
008 | 200819s2003 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/A:1026211909760 |2 doi | |
035 | |a (DE-627)OLC2026537585 | ||
035 | |a (DE-He213)A:1026211909760-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Flores, Julio |e verfasserin |4 aut | |
245 | 1 | 0 | |a Domination by Positive Narrow Operators |
264 | 1 | |c 2003 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Kluwer Academic Publishers 2003 | ||
520 | |a Abstract We prove that each positive operator from a Köthe function-space E(μ) to a Banach lattice F with a narrow majorant is itself narrow provided the norm on F is order continuous. We also prove that every l2-strictly singular regular operator from Lp[0,1], 1≤p < ∞, to a Banach lattice F is narrow, provided F has an order continuous norm. | ||
650 | 4 | |a Fourier Analysis | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Potential Theory | |
650 | 4 | |a Positive Operator | |
650 | 4 | |a Banach Lattice | |
700 | 1 | |a Ruiz, César |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Positivity |d Kluwer Academic Publishers, 1997 |g 7(2003), 4 vom: Dez., Seite 303-321 |w (DE-627)243279434 |w (DE-600)1426263-0 |w (DE-576)066430526 |x 1385-1292 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2003 |g number:4 |g month:12 |g pages:303-321 |
856 | 4 | 1 | |u https://doi.org/10.1023/A:1026211909760 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4116 | ||
951 | |a AR | ||
952 | |d 7 |j 2003 |e 4 |c 12 |h 303-321 |
author_variant |
j f jf c r cr |
---|---|
matchkey_str |
article:13851292:2003----::oiainyoiiear |
hierarchy_sort_str |
2003 |
publishDate |
2003 |
allfields |
10.1023/A:1026211909760 doi (DE-627)OLC2026537585 (DE-He213)A:1026211909760-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Flores, Julio verfasserin aut Domination by Positive Narrow Operators 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2003 Abstract We prove that each positive operator from a Köthe function-space E(μ) to a Banach lattice F with a narrow majorant is itself narrow provided the norm on F is order continuous. We also prove that every l2-strictly singular regular operator from Lp[0,1], 1≤p < ∞, to a Banach lattice F is narrow, provided F has an order continuous norm. Fourier Analysis Operator Theory Potential Theory Positive Operator Banach Lattice Ruiz, César aut Enthalten in Positivity Kluwer Academic Publishers, 1997 7(2003), 4 vom: Dez., Seite 303-321 (DE-627)243279434 (DE-600)1426263-0 (DE-576)066430526 1385-1292 nnns volume:7 year:2003 number:4 month:12 pages:303-321 https://doi.org/10.1023/A:1026211909760 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2088 GBV_ILN_4116 AR 7 2003 4 12 303-321 |
spelling |
10.1023/A:1026211909760 doi (DE-627)OLC2026537585 (DE-He213)A:1026211909760-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Flores, Julio verfasserin aut Domination by Positive Narrow Operators 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2003 Abstract We prove that each positive operator from a Köthe function-space E(μ) to a Banach lattice F with a narrow majorant is itself narrow provided the norm on F is order continuous. We also prove that every l2-strictly singular regular operator from Lp[0,1], 1≤p < ∞, to a Banach lattice F is narrow, provided F has an order continuous norm. Fourier Analysis Operator Theory Potential Theory Positive Operator Banach Lattice Ruiz, César aut Enthalten in Positivity Kluwer Academic Publishers, 1997 7(2003), 4 vom: Dez., Seite 303-321 (DE-627)243279434 (DE-600)1426263-0 (DE-576)066430526 1385-1292 nnns volume:7 year:2003 number:4 month:12 pages:303-321 https://doi.org/10.1023/A:1026211909760 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2088 GBV_ILN_4116 AR 7 2003 4 12 303-321 |
allfields_unstemmed |
10.1023/A:1026211909760 doi (DE-627)OLC2026537585 (DE-He213)A:1026211909760-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Flores, Julio verfasserin aut Domination by Positive Narrow Operators 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2003 Abstract We prove that each positive operator from a Köthe function-space E(μ) to a Banach lattice F with a narrow majorant is itself narrow provided the norm on F is order continuous. We also prove that every l2-strictly singular regular operator from Lp[0,1], 1≤p < ∞, to a Banach lattice F is narrow, provided F has an order continuous norm. Fourier Analysis Operator Theory Potential Theory Positive Operator Banach Lattice Ruiz, César aut Enthalten in Positivity Kluwer Academic Publishers, 1997 7(2003), 4 vom: Dez., Seite 303-321 (DE-627)243279434 (DE-600)1426263-0 (DE-576)066430526 1385-1292 nnns volume:7 year:2003 number:4 month:12 pages:303-321 https://doi.org/10.1023/A:1026211909760 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2088 GBV_ILN_4116 AR 7 2003 4 12 303-321 |
allfieldsGer |
10.1023/A:1026211909760 doi (DE-627)OLC2026537585 (DE-He213)A:1026211909760-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Flores, Julio verfasserin aut Domination by Positive Narrow Operators 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2003 Abstract We prove that each positive operator from a Köthe function-space E(μ) to a Banach lattice F with a narrow majorant is itself narrow provided the norm on F is order continuous. We also prove that every l2-strictly singular regular operator from Lp[0,1], 1≤p < ∞, to a Banach lattice F is narrow, provided F has an order continuous norm. Fourier Analysis Operator Theory Potential Theory Positive Operator Banach Lattice Ruiz, César aut Enthalten in Positivity Kluwer Academic Publishers, 1997 7(2003), 4 vom: Dez., Seite 303-321 (DE-627)243279434 (DE-600)1426263-0 (DE-576)066430526 1385-1292 nnns volume:7 year:2003 number:4 month:12 pages:303-321 https://doi.org/10.1023/A:1026211909760 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2088 GBV_ILN_4116 AR 7 2003 4 12 303-321 |
allfieldsSound |
10.1023/A:1026211909760 doi (DE-627)OLC2026537585 (DE-He213)A:1026211909760-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Flores, Julio verfasserin aut Domination by Positive Narrow Operators 2003 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2003 Abstract We prove that each positive operator from a Köthe function-space E(μ) to a Banach lattice F with a narrow majorant is itself narrow provided the norm on F is order continuous. We also prove that every l2-strictly singular regular operator from Lp[0,1], 1≤p < ∞, to a Banach lattice F is narrow, provided F has an order continuous norm. Fourier Analysis Operator Theory Potential Theory Positive Operator Banach Lattice Ruiz, César aut Enthalten in Positivity Kluwer Academic Publishers, 1997 7(2003), 4 vom: Dez., Seite 303-321 (DE-627)243279434 (DE-600)1426263-0 (DE-576)066430526 1385-1292 nnns volume:7 year:2003 number:4 month:12 pages:303-321 https://doi.org/10.1023/A:1026211909760 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2088 GBV_ILN_4116 AR 7 2003 4 12 303-321 |
language |
English |
source |
Enthalten in Positivity 7(2003), 4 vom: Dez., Seite 303-321 volume:7 year:2003 number:4 month:12 pages:303-321 |
sourceStr |
Enthalten in Positivity 7(2003), 4 vom: Dez., Seite 303-321 volume:7 year:2003 number:4 month:12 pages:303-321 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fourier Analysis Operator Theory Potential Theory Positive Operator Banach Lattice |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Positivity |
authorswithroles_txt_mv |
Flores, Julio @@aut@@ Ruiz, César @@aut@@ |
publishDateDaySort_date |
2003-12-01T00:00:00Z |
hierarchy_top_id |
243279434 |
dewey-sort |
3510 |
id |
OLC2026537585 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026537585</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504012006.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2003 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1026211909760</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026537585</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1026211909760-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Flores, Julio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Domination by Positive Narrow Operators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 2003</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove that each positive operator from a Köthe function-space E(μ) to a Banach lattice F with a narrow majorant is itself narrow provided the norm on F is order continuous. We also prove that every l2-strictly singular regular operator from Lp[0,1], 1≤p < ∞, to a Banach lattice F is narrow, provided F has an order continuous norm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positive Operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach Lattice</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ruiz, César</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Positivity</subfield><subfield code="d">Kluwer Academic Publishers, 1997</subfield><subfield code="g">7(2003), 4 vom: Dez., Seite 303-321</subfield><subfield code="w">(DE-627)243279434</subfield><subfield code="w">(DE-600)1426263-0</subfield><subfield code="w">(DE-576)066430526</subfield><subfield code="x">1385-1292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:4</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:303-321</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1026211909760</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2003</subfield><subfield code="e">4</subfield><subfield code="c">12</subfield><subfield code="h">303-321</subfield></datafield></record></collection>
|
author |
Flores, Julio |
spellingShingle |
Flores, Julio ddc 510 ssgn 17,1 misc Fourier Analysis misc Operator Theory misc Potential Theory misc Positive Operator misc Banach Lattice Domination by Positive Narrow Operators |
authorStr |
Flores, Julio |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)243279434 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1385-1292 |
topic_title |
510 VZ 17,1 ssgn Domination by Positive Narrow Operators Fourier Analysis Operator Theory Potential Theory Positive Operator Banach Lattice |
topic |
ddc 510 ssgn 17,1 misc Fourier Analysis misc Operator Theory misc Potential Theory misc Positive Operator misc Banach Lattice |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Fourier Analysis misc Operator Theory misc Potential Theory misc Positive Operator misc Banach Lattice |
topic_browse |
ddc 510 ssgn 17,1 misc Fourier Analysis misc Operator Theory misc Potential Theory misc Positive Operator misc Banach Lattice |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Positivity |
hierarchy_parent_id |
243279434 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Positivity |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)243279434 (DE-600)1426263-0 (DE-576)066430526 |
title |
Domination by Positive Narrow Operators |
ctrlnum |
(DE-627)OLC2026537585 (DE-He213)A:1026211909760-p |
title_full |
Domination by Positive Narrow Operators |
author_sort |
Flores, Julio |
journal |
Positivity |
journalStr |
Positivity |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2003 |
contenttype_str_mv |
txt |
container_start_page |
303 |
author_browse |
Flores, Julio Ruiz, César |
container_volume |
7 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Flores, Julio |
doi_str_mv |
10.1023/A:1026211909760 |
dewey-full |
510 |
title_sort |
domination by positive narrow operators |
title_auth |
Domination by Positive Narrow Operators |
abstract |
Abstract We prove that each positive operator from a Köthe function-space E(μ) to a Banach lattice F with a narrow majorant is itself narrow provided the norm on F is order continuous. We also prove that every l2-strictly singular regular operator from Lp[0,1], 1≤p < ∞, to a Banach lattice F is narrow, provided F has an order continuous norm. © Kluwer Academic Publishers 2003 |
abstractGer |
Abstract We prove that each positive operator from a Köthe function-space E(μ) to a Banach lattice F with a narrow majorant is itself narrow provided the norm on F is order continuous. We also prove that every l2-strictly singular regular operator from Lp[0,1], 1≤p < ∞, to a Banach lattice F is narrow, provided F has an order continuous norm. © Kluwer Academic Publishers 2003 |
abstract_unstemmed |
Abstract We prove that each positive operator from a Köthe function-space E(μ) to a Banach lattice F with a narrow majorant is itself narrow provided the norm on F is order continuous. We also prove that every l2-strictly singular regular operator from Lp[0,1], 1≤p < ∞, to a Banach lattice F is narrow, provided F has an order continuous norm. © Kluwer Academic Publishers 2003 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2088 GBV_ILN_4116 |
container_issue |
4 |
title_short |
Domination by Positive Narrow Operators |
url |
https://doi.org/10.1023/A:1026211909760 |
remote_bool |
false |
author2 |
Ruiz, César |
author2Str |
Ruiz, César |
ppnlink |
243279434 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/A:1026211909760 |
up_date |
2024-07-04T04:11:35.570Z |
_version_ |
1803620235946754048 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026537585</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504012006.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2003 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1026211909760</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026537585</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1026211909760-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Flores, Julio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Domination by Positive Narrow Operators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 2003</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We prove that each positive operator from a Köthe function-space E(μ) to a Banach lattice F with a narrow majorant is itself narrow provided the norm on F is order continuous. We also prove that every l2-strictly singular regular operator from Lp[0,1], 1≤p < ∞, to a Banach lattice F is narrow, provided F has an order continuous norm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Positive Operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach Lattice</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ruiz, César</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Positivity</subfield><subfield code="d">Kluwer Academic Publishers, 1997</subfield><subfield code="g">7(2003), 4 vom: Dez., Seite 303-321</subfield><subfield code="w">(DE-627)243279434</subfield><subfield code="w">(DE-600)1426263-0</subfield><subfield code="w">(DE-576)066430526</subfield><subfield code="x">1385-1292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:4</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:303-321</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1026211909760</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2003</subfield><subfield code="e">4</subfield><subfield code="c">12</subfield><subfield code="h">303-321</subfield></datafield></record></collection>
|
score |
7.399295 |