Bochner integrals in ordered vector spaces
Abstract We present a natural way to cover an Archimedean directed ordered vector space E by Banach spaces and extend the notion of Bochner integrability to functions with values in E. The resulting set of integrable functions is an Archimedean directed ordered vector space and the integral is an or...
Ausführliche Beschreibung
Autor*in: |
van Rooij, A. C. M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Positivity - Springer International Publishing, 1997, 21(2016), 3 vom: 01. Dez., Seite 1089-1113 |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2016 ; number:3 ; day:01 ; month:12 ; pages:1089-1113 |
Links: |
---|
DOI / URN: |
10.1007/s11117-016-0454-9 |
---|
Katalog-ID: |
OLC2026545030 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2026545030 | ||
003 | DE-627 | ||
005 | 20230504012111.0 | ||
007 | tu | ||
008 | 200820s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11117-016-0454-9 |2 doi | |
035 | |a (DE-627)OLC2026545030 | ||
035 | |a (DE-He213)s11117-016-0454-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a van Rooij, A. C. M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Bochner integrals in ordered vector spaces |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2016 | ||
520 | |a Abstract We present a natural way to cover an Archimedean directed ordered vector space E by Banach spaces and extend the notion of Bochner integrability to functions with values in E. The resulting set of integrable functions is an Archimedean directed ordered vector space and the integral is an order preserving map. | ||
650 | 4 | |a Bochner integral | |
650 | 4 | |a Ordered vector space | |
650 | 4 | |a Ordered Banach space | |
650 | 4 | |a Closed cone | |
650 | 4 | |a Generating cone | |
700 | 1 | |a van Zuijlen, W. B. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Positivity |d Springer International Publishing, 1997 |g 21(2016), 3 vom: 01. Dez., Seite 1089-1113 |w (DE-627)243279434 |w (DE-600)1426263-0 |w (DE-576)066430526 |x 1385-1292 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2016 |g number:3 |g day:01 |g month:12 |g pages:1089-1113 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11117-016-0454-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_2088 | ||
951 | |a AR | ||
952 | |d 21 |j 2016 |e 3 |b 01 |c 12 |h 1089-1113 |
author_variant |
r a c m v racm racmv z w b v zwb zwbv |
---|---|
matchkey_str |
article:13851292:2016----::oheitgasnreev |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s11117-016-0454-9 doi (DE-627)OLC2026545030 (DE-He213)s11117-016-0454-9-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn van Rooij, A. C. M. verfasserin aut Bochner integrals in ordered vector spaces 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2016 Abstract We present a natural way to cover an Archimedean directed ordered vector space E by Banach spaces and extend the notion of Bochner integrability to functions with values in E. The resulting set of integrable functions is an Archimedean directed ordered vector space and the integral is an order preserving map. Bochner integral Ordered vector space Ordered Banach space Closed cone Generating cone van Zuijlen, W. B. aut Enthalten in Positivity Springer International Publishing, 1997 21(2016), 3 vom: 01. Dez., Seite 1089-1113 (DE-627)243279434 (DE-600)1426263-0 (DE-576)066430526 1385-1292 nnns volume:21 year:2016 number:3 day:01 month:12 pages:1089-1113 https://doi.org/10.1007/s11117-016-0454-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 AR 21 2016 3 01 12 1089-1113 |
spelling |
10.1007/s11117-016-0454-9 doi (DE-627)OLC2026545030 (DE-He213)s11117-016-0454-9-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn van Rooij, A. C. M. verfasserin aut Bochner integrals in ordered vector spaces 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2016 Abstract We present a natural way to cover an Archimedean directed ordered vector space E by Banach spaces and extend the notion of Bochner integrability to functions with values in E. The resulting set of integrable functions is an Archimedean directed ordered vector space and the integral is an order preserving map. Bochner integral Ordered vector space Ordered Banach space Closed cone Generating cone van Zuijlen, W. B. aut Enthalten in Positivity Springer International Publishing, 1997 21(2016), 3 vom: 01. Dez., Seite 1089-1113 (DE-627)243279434 (DE-600)1426263-0 (DE-576)066430526 1385-1292 nnns volume:21 year:2016 number:3 day:01 month:12 pages:1089-1113 https://doi.org/10.1007/s11117-016-0454-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 AR 21 2016 3 01 12 1089-1113 |
allfields_unstemmed |
10.1007/s11117-016-0454-9 doi (DE-627)OLC2026545030 (DE-He213)s11117-016-0454-9-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn van Rooij, A. C. M. verfasserin aut Bochner integrals in ordered vector spaces 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2016 Abstract We present a natural way to cover an Archimedean directed ordered vector space E by Banach spaces and extend the notion of Bochner integrability to functions with values in E. The resulting set of integrable functions is an Archimedean directed ordered vector space and the integral is an order preserving map. Bochner integral Ordered vector space Ordered Banach space Closed cone Generating cone van Zuijlen, W. B. aut Enthalten in Positivity Springer International Publishing, 1997 21(2016), 3 vom: 01. Dez., Seite 1089-1113 (DE-627)243279434 (DE-600)1426263-0 (DE-576)066430526 1385-1292 nnns volume:21 year:2016 number:3 day:01 month:12 pages:1089-1113 https://doi.org/10.1007/s11117-016-0454-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 AR 21 2016 3 01 12 1089-1113 |
allfieldsGer |
10.1007/s11117-016-0454-9 doi (DE-627)OLC2026545030 (DE-He213)s11117-016-0454-9-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn van Rooij, A. C. M. verfasserin aut Bochner integrals in ordered vector spaces 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2016 Abstract We present a natural way to cover an Archimedean directed ordered vector space E by Banach spaces and extend the notion of Bochner integrability to functions with values in E. The resulting set of integrable functions is an Archimedean directed ordered vector space and the integral is an order preserving map. Bochner integral Ordered vector space Ordered Banach space Closed cone Generating cone van Zuijlen, W. B. aut Enthalten in Positivity Springer International Publishing, 1997 21(2016), 3 vom: 01. Dez., Seite 1089-1113 (DE-627)243279434 (DE-600)1426263-0 (DE-576)066430526 1385-1292 nnns volume:21 year:2016 number:3 day:01 month:12 pages:1089-1113 https://doi.org/10.1007/s11117-016-0454-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 AR 21 2016 3 01 12 1089-1113 |
allfieldsSound |
10.1007/s11117-016-0454-9 doi (DE-627)OLC2026545030 (DE-He213)s11117-016-0454-9-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn van Rooij, A. C. M. verfasserin aut Bochner integrals in ordered vector spaces 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2016 Abstract We present a natural way to cover an Archimedean directed ordered vector space E by Banach spaces and extend the notion of Bochner integrability to functions with values in E. The resulting set of integrable functions is an Archimedean directed ordered vector space and the integral is an order preserving map. Bochner integral Ordered vector space Ordered Banach space Closed cone Generating cone van Zuijlen, W. B. aut Enthalten in Positivity Springer International Publishing, 1997 21(2016), 3 vom: 01. Dez., Seite 1089-1113 (DE-627)243279434 (DE-600)1426263-0 (DE-576)066430526 1385-1292 nnns volume:21 year:2016 number:3 day:01 month:12 pages:1089-1113 https://doi.org/10.1007/s11117-016-0454-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 AR 21 2016 3 01 12 1089-1113 |
language |
English |
source |
Enthalten in Positivity 21(2016), 3 vom: 01. Dez., Seite 1089-1113 volume:21 year:2016 number:3 day:01 month:12 pages:1089-1113 |
sourceStr |
Enthalten in Positivity 21(2016), 3 vom: 01. Dez., Seite 1089-1113 volume:21 year:2016 number:3 day:01 month:12 pages:1089-1113 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Bochner integral Ordered vector space Ordered Banach space Closed cone Generating cone |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Positivity |
authorswithroles_txt_mv |
van Rooij, A. C. M. @@aut@@ van Zuijlen, W. B. @@aut@@ |
publishDateDaySort_date |
2016-12-01T00:00:00Z |
hierarchy_top_id |
243279434 |
dewey-sort |
3510 |
id |
OLC2026545030 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026545030</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504012111.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11117-016-0454-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026545030</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11117-016-0454-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">van Rooij, A. C. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bochner integrals in ordered vector spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present a natural way to cover an Archimedean directed ordered vector space E by Banach spaces and extend the notion of Bochner integrability to functions with values in E. The resulting set of integrable functions is an Archimedean directed ordered vector space and the integral is an order preserving map.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bochner integral</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordered vector space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordered Banach space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Closed cone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generating cone</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Zuijlen, W. B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Positivity</subfield><subfield code="d">Springer International Publishing, 1997</subfield><subfield code="g">21(2016), 3 vom: 01. Dez., Seite 1089-1113</subfield><subfield code="w">(DE-627)243279434</subfield><subfield code="w">(DE-600)1426263-0</subfield><subfield code="w">(DE-576)066430526</subfield><subfield code="x">1385-1292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">day:01</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1089-1113</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11117-016-0454-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="b">01</subfield><subfield code="c">12</subfield><subfield code="h">1089-1113</subfield></datafield></record></collection>
|
author |
van Rooij, A. C. M. |
spellingShingle |
van Rooij, A. C. M. ddc 510 ssgn 17,1 misc Bochner integral misc Ordered vector space misc Ordered Banach space misc Closed cone misc Generating cone Bochner integrals in ordered vector spaces |
authorStr |
van Rooij, A. C. M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)243279434 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1385-1292 |
topic_title |
510 VZ 17,1 ssgn Bochner integrals in ordered vector spaces Bochner integral Ordered vector space Ordered Banach space Closed cone Generating cone |
topic |
ddc 510 ssgn 17,1 misc Bochner integral misc Ordered vector space misc Ordered Banach space misc Closed cone misc Generating cone |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Bochner integral misc Ordered vector space misc Ordered Banach space misc Closed cone misc Generating cone |
topic_browse |
ddc 510 ssgn 17,1 misc Bochner integral misc Ordered vector space misc Ordered Banach space misc Closed cone misc Generating cone |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Positivity |
hierarchy_parent_id |
243279434 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Positivity |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)243279434 (DE-600)1426263-0 (DE-576)066430526 |
title |
Bochner integrals in ordered vector spaces |
ctrlnum |
(DE-627)OLC2026545030 (DE-He213)s11117-016-0454-9-p |
title_full |
Bochner integrals in ordered vector spaces |
author_sort |
van Rooij, A. C. M. |
journal |
Positivity |
journalStr |
Positivity |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1089 |
author_browse |
van Rooij, A. C. M. van Zuijlen, W. B. |
container_volume |
21 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
van Rooij, A. C. M. |
doi_str_mv |
10.1007/s11117-016-0454-9 |
dewey-full |
510 |
title_sort |
bochner integrals in ordered vector spaces |
title_auth |
Bochner integrals in ordered vector spaces |
abstract |
Abstract We present a natural way to cover an Archimedean directed ordered vector space E by Banach spaces and extend the notion of Bochner integrability to functions with values in E. The resulting set of integrable functions is an Archimedean directed ordered vector space and the integral is an order preserving map. © The Author(s) 2016 |
abstractGer |
Abstract We present a natural way to cover an Archimedean directed ordered vector space E by Banach spaces and extend the notion of Bochner integrability to functions with values in E. The resulting set of integrable functions is an Archimedean directed ordered vector space and the integral is an order preserving map. © The Author(s) 2016 |
abstract_unstemmed |
Abstract We present a natural way to cover an Archimedean directed ordered vector space E by Banach spaces and extend the notion of Bochner integrability to functions with values in E. The resulting set of integrable functions is an Archimedean directed ordered vector space and the integral is an order preserving map. © The Author(s) 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 |
container_issue |
3 |
title_short |
Bochner integrals in ordered vector spaces |
url |
https://doi.org/10.1007/s11117-016-0454-9 |
remote_bool |
false |
author2 |
van Zuijlen, W. B. |
author2Str |
van Zuijlen, W. B. |
ppnlink |
243279434 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11117-016-0454-9 |
up_date |
2024-07-04T04:12:24.030Z |
_version_ |
1803620286768087040 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2026545030</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504012111.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11117-016-0454-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2026545030</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11117-016-0454-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">van Rooij, A. C. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bochner integrals in ordered vector spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present a natural way to cover an Archimedean directed ordered vector space E by Banach spaces and extend the notion of Bochner integrability to functions with values in E. The resulting set of integrable functions is an Archimedean directed ordered vector space and the integral is an order preserving map.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bochner integral</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordered vector space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordered Banach space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Closed cone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generating cone</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Zuijlen, W. B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Positivity</subfield><subfield code="d">Springer International Publishing, 1997</subfield><subfield code="g">21(2016), 3 vom: 01. Dez., Seite 1089-1113</subfield><subfield code="w">(DE-627)243279434</subfield><subfield code="w">(DE-600)1426263-0</subfield><subfield code="w">(DE-576)066430526</subfield><subfield code="x">1385-1292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">day:01</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1089-1113</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11117-016-0454-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="b">01</subfield><subfield code="c">12</subfield><subfield code="h">1089-1113</subfield></datafield></record></collection>
|
score |
7.402712 |