Phase Field Modeling of Joint Formation During Isothermal Solidification in 3DIC Micro Packaging
Abstract In this paper, a computational multi-phase field approach is utilized to study the formation of the Cu/Sn/Cu micro-joint in 3-Dimensional Integrated Circuits (3DICs). The method considers the evolution of the system during isothermal solidification at 250 °C for the case of two different in...
Ausführliche Beschreibung
Autor*in: |
Attari, Vahid [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© ASM International 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of phase equilibria and diffusion - Springer US, 2004, 37(2016), 4 vom: 16. Juni, Seite 469-480 |
---|---|
Übergeordnetes Werk: |
volume:37 ; year:2016 ; number:4 ; day:16 ; month:06 ; pages:469-480 |
Links: |
---|
DOI / URN: |
10.1007/s11669-016-0475-x |
---|
Katalog-ID: |
OLC202676607X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC202676607X | ||
003 | DE-627 | ||
005 | 20230517165337.0 | ||
007 | tu | ||
008 | 200820s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11669-016-0475-x |2 doi | |
035 | |a (DE-627)OLC202676607X | ||
035 | |a (DE-He213)s11669-016-0475-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 660 |a 670 |q VZ |
084 | |a 51.10$jMetallphysik |2 bkl | ||
100 | 1 | |a Attari, Vahid |e verfasserin |4 aut | |
245 | 1 | 0 | |a Phase Field Modeling of Joint Formation During Isothermal Solidification in 3DIC Micro Packaging |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © ASM International 2016 | ||
520 | |a Abstract In this paper, a computational multi-phase field approach is utilized to study the formation of the Cu/Sn/Cu micro-joint in 3-Dimensional Integrated Circuits (3DICs). The method considers the evolution of the system during isothermal solidification at 250 °C for the case of two different interlayer thicknesses (5 and 10 µm). The Cu/Sn/Cu interconnection structure is important for the micro packaging in the 3DIC systems. The thermodynamics and kinetics of growth of η-$ Cu_{6} $$ Sn_{5} $ and ɛ-$ Cu_{3} $Sn interfacial intermetallics (IMCs) are investigated by coupling the multi-phase field method with CALPHAD approach. The interaction of the phases is addressed by assuming a metastable condition for the Cu/Sn reacting system. The simulations start with the nucleation and rapid growth of the η-$ Cu_{6} $$ Sn_{5} $ IMCs at the initial stage, the nucleation and growth of ɛ-$ Cu_{3} $Sn IMCs at the intermediate stage ending with the full consumption of Sn layer and the domination of ɛ-$ Cu_{3} $Sn IMCs at the later stages. In addition, comparing different diffusion rates through the grain boundary of η phases show that their morphology is the direct consequence of balance of kinetic forces. This work provides a valuable understanding of the dominant mechanisms for mass transport in the Cu/Sn/Cu low volume interconnections. The results show that the phase field modeling is successful in addressing the morphological evolution and growth of IMC layers in the 3DIC joint formation. | ||
650 | 4 | |a 3DIC micro-packaging technology | |
650 | 4 | |a chemical equilibrium | |
650 | 4 | |a morphology | |
650 | 4 | |a phase field modeling | |
650 | 4 | |a phase transformation | |
700 | 1 | |a Arroyave, Raymundo |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of phase equilibria and diffusion |d Springer US, 2004 |g 37(2016), 4 vom: 16. Juni, Seite 469-480 |w (DE-627)393353648 |w (DE-600)2140016-7 |w (DE-576)113026102 |x 1547-7037 |7 nnns |
773 | 1 | 8 | |g volume:37 |g year:2016 |g number:4 |g day:16 |g month:06 |g pages:469-480 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11669-016-0475-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 51.10$jMetallphysik |q VZ |0 106417843 |0 (DE-625)106417843 |
951 | |a AR | ||
952 | |d 37 |j 2016 |e 4 |b 16 |c 06 |h 469-480 |
author_variant |
v a va r a ra |
---|---|
matchkey_str |
article:15477037:2016----::hsfedoeigfonfrainuigstemloiiiai |
hierarchy_sort_str |
2016 |
bklnumber |
51.10$jMetallphysik |
publishDate |
2016 |
allfields |
10.1007/s11669-016-0475-x doi (DE-627)OLC202676607X (DE-He213)s11669-016-0475-x-p DE-627 ger DE-627 rakwb eng 620 660 670 VZ 51.10$jMetallphysik bkl Attari, Vahid verfasserin aut Phase Field Modeling of Joint Formation During Isothermal Solidification in 3DIC Micro Packaging 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © ASM International 2016 Abstract In this paper, a computational multi-phase field approach is utilized to study the formation of the Cu/Sn/Cu micro-joint in 3-Dimensional Integrated Circuits (3DICs). The method considers the evolution of the system during isothermal solidification at 250 °C for the case of two different interlayer thicknesses (5 and 10 µm). The Cu/Sn/Cu interconnection structure is important for the micro packaging in the 3DIC systems. The thermodynamics and kinetics of growth of η-$ Cu_{6} $$ Sn_{5} $ and ɛ-$ Cu_{3} $Sn interfacial intermetallics (IMCs) are investigated by coupling the multi-phase field method with CALPHAD approach. The interaction of the phases is addressed by assuming a metastable condition for the Cu/Sn reacting system. The simulations start with the nucleation and rapid growth of the η-$ Cu_{6} $$ Sn_{5} $ IMCs at the initial stage, the nucleation and growth of ɛ-$ Cu_{3} $Sn IMCs at the intermediate stage ending with the full consumption of Sn layer and the domination of ɛ-$ Cu_{3} $Sn IMCs at the later stages. In addition, comparing different diffusion rates through the grain boundary of η phases show that their morphology is the direct consequence of balance of kinetic forces. This work provides a valuable understanding of the dominant mechanisms for mass transport in the Cu/Sn/Cu low volume interconnections. The results show that the phase field modeling is successful in addressing the morphological evolution and growth of IMC layers in the 3DIC joint formation. 3DIC micro-packaging technology chemical equilibrium morphology phase field modeling phase transformation Arroyave, Raymundo aut Enthalten in Journal of phase equilibria and diffusion Springer US, 2004 37(2016), 4 vom: 16. Juni, Seite 469-480 (DE-627)393353648 (DE-600)2140016-7 (DE-576)113026102 1547-7037 nnns volume:37 year:2016 number:4 day:16 month:06 pages:469-480 https://doi.org/10.1007/s11669-016-0475-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_30 GBV_ILN_70 51.10$jMetallphysik VZ 106417843 (DE-625)106417843 AR 37 2016 4 16 06 469-480 |
spelling |
10.1007/s11669-016-0475-x doi (DE-627)OLC202676607X (DE-He213)s11669-016-0475-x-p DE-627 ger DE-627 rakwb eng 620 660 670 VZ 51.10$jMetallphysik bkl Attari, Vahid verfasserin aut Phase Field Modeling of Joint Formation During Isothermal Solidification in 3DIC Micro Packaging 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © ASM International 2016 Abstract In this paper, a computational multi-phase field approach is utilized to study the formation of the Cu/Sn/Cu micro-joint in 3-Dimensional Integrated Circuits (3DICs). The method considers the evolution of the system during isothermal solidification at 250 °C for the case of two different interlayer thicknesses (5 and 10 µm). The Cu/Sn/Cu interconnection structure is important for the micro packaging in the 3DIC systems. The thermodynamics and kinetics of growth of η-$ Cu_{6} $$ Sn_{5} $ and ɛ-$ Cu_{3} $Sn interfacial intermetallics (IMCs) are investigated by coupling the multi-phase field method with CALPHAD approach. The interaction of the phases is addressed by assuming a metastable condition for the Cu/Sn reacting system. The simulations start with the nucleation and rapid growth of the η-$ Cu_{6} $$ Sn_{5} $ IMCs at the initial stage, the nucleation and growth of ɛ-$ Cu_{3} $Sn IMCs at the intermediate stage ending with the full consumption of Sn layer and the domination of ɛ-$ Cu_{3} $Sn IMCs at the later stages. In addition, comparing different diffusion rates through the grain boundary of η phases show that their morphology is the direct consequence of balance of kinetic forces. This work provides a valuable understanding of the dominant mechanisms for mass transport in the Cu/Sn/Cu low volume interconnections. The results show that the phase field modeling is successful in addressing the morphological evolution and growth of IMC layers in the 3DIC joint formation. 3DIC micro-packaging technology chemical equilibrium morphology phase field modeling phase transformation Arroyave, Raymundo aut Enthalten in Journal of phase equilibria and diffusion Springer US, 2004 37(2016), 4 vom: 16. Juni, Seite 469-480 (DE-627)393353648 (DE-600)2140016-7 (DE-576)113026102 1547-7037 nnns volume:37 year:2016 number:4 day:16 month:06 pages:469-480 https://doi.org/10.1007/s11669-016-0475-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_30 GBV_ILN_70 51.10$jMetallphysik VZ 106417843 (DE-625)106417843 AR 37 2016 4 16 06 469-480 |
allfields_unstemmed |
10.1007/s11669-016-0475-x doi (DE-627)OLC202676607X (DE-He213)s11669-016-0475-x-p DE-627 ger DE-627 rakwb eng 620 660 670 VZ 51.10$jMetallphysik bkl Attari, Vahid verfasserin aut Phase Field Modeling of Joint Formation During Isothermal Solidification in 3DIC Micro Packaging 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © ASM International 2016 Abstract In this paper, a computational multi-phase field approach is utilized to study the formation of the Cu/Sn/Cu micro-joint in 3-Dimensional Integrated Circuits (3DICs). The method considers the evolution of the system during isothermal solidification at 250 °C for the case of two different interlayer thicknesses (5 and 10 µm). The Cu/Sn/Cu interconnection structure is important for the micro packaging in the 3DIC systems. The thermodynamics and kinetics of growth of η-$ Cu_{6} $$ Sn_{5} $ and ɛ-$ Cu_{3} $Sn interfacial intermetallics (IMCs) are investigated by coupling the multi-phase field method with CALPHAD approach. The interaction of the phases is addressed by assuming a metastable condition for the Cu/Sn reacting system. The simulations start with the nucleation and rapid growth of the η-$ Cu_{6} $$ Sn_{5} $ IMCs at the initial stage, the nucleation and growth of ɛ-$ Cu_{3} $Sn IMCs at the intermediate stage ending with the full consumption of Sn layer and the domination of ɛ-$ Cu_{3} $Sn IMCs at the later stages. In addition, comparing different diffusion rates through the grain boundary of η phases show that their morphology is the direct consequence of balance of kinetic forces. This work provides a valuable understanding of the dominant mechanisms for mass transport in the Cu/Sn/Cu low volume interconnections. The results show that the phase field modeling is successful in addressing the morphological evolution and growth of IMC layers in the 3DIC joint formation. 3DIC micro-packaging technology chemical equilibrium morphology phase field modeling phase transformation Arroyave, Raymundo aut Enthalten in Journal of phase equilibria and diffusion Springer US, 2004 37(2016), 4 vom: 16. Juni, Seite 469-480 (DE-627)393353648 (DE-600)2140016-7 (DE-576)113026102 1547-7037 nnns volume:37 year:2016 number:4 day:16 month:06 pages:469-480 https://doi.org/10.1007/s11669-016-0475-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_30 GBV_ILN_70 51.10$jMetallphysik VZ 106417843 (DE-625)106417843 AR 37 2016 4 16 06 469-480 |
allfieldsGer |
10.1007/s11669-016-0475-x doi (DE-627)OLC202676607X (DE-He213)s11669-016-0475-x-p DE-627 ger DE-627 rakwb eng 620 660 670 VZ 51.10$jMetallphysik bkl Attari, Vahid verfasserin aut Phase Field Modeling of Joint Formation During Isothermal Solidification in 3DIC Micro Packaging 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © ASM International 2016 Abstract In this paper, a computational multi-phase field approach is utilized to study the formation of the Cu/Sn/Cu micro-joint in 3-Dimensional Integrated Circuits (3DICs). The method considers the evolution of the system during isothermal solidification at 250 °C for the case of two different interlayer thicknesses (5 and 10 µm). The Cu/Sn/Cu interconnection structure is important for the micro packaging in the 3DIC systems. The thermodynamics and kinetics of growth of η-$ Cu_{6} $$ Sn_{5} $ and ɛ-$ Cu_{3} $Sn interfacial intermetallics (IMCs) are investigated by coupling the multi-phase field method with CALPHAD approach. The interaction of the phases is addressed by assuming a metastable condition for the Cu/Sn reacting system. The simulations start with the nucleation and rapid growth of the η-$ Cu_{6} $$ Sn_{5} $ IMCs at the initial stage, the nucleation and growth of ɛ-$ Cu_{3} $Sn IMCs at the intermediate stage ending with the full consumption of Sn layer and the domination of ɛ-$ Cu_{3} $Sn IMCs at the later stages. In addition, comparing different diffusion rates through the grain boundary of η phases show that their morphology is the direct consequence of balance of kinetic forces. This work provides a valuable understanding of the dominant mechanisms for mass transport in the Cu/Sn/Cu low volume interconnections. The results show that the phase field modeling is successful in addressing the morphological evolution and growth of IMC layers in the 3DIC joint formation. 3DIC micro-packaging technology chemical equilibrium morphology phase field modeling phase transformation Arroyave, Raymundo aut Enthalten in Journal of phase equilibria and diffusion Springer US, 2004 37(2016), 4 vom: 16. Juni, Seite 469-480 (DE-627)393353648 (DE-600)2140016-7 (DE-576)113026102 1547-7037 nnns volume:37 year:2016 number:4 day:16 month:06 pages:469-480 https://doi.org/10.1007/s11669-016-0475-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_30 GBV_ILN_70 51.10$jMetallphysik VZ 106417843 (DE-625)106417843 AR 37 2016 4 16 06 469-480 |
allfieldsSound |
10.1007/s11669-016-0475-x doi (DE-627)OLC202676607X (DE-He213)s11669-016-0475-x-p DE-627 ger DE-627 rakwb eng 620 660 670 VZ 51.10$jMetallphysik bkl Attari, Vahid verfasserin aut Phase Field Modeling of Joint Formation During Isothermal Solidification in 3DIC Micro Packaging 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © ASM International 2016 Abstract In this paper, a computational multi-phase field approach is utilized to study the formation of the Cu/Sn/Cu micro-joint in 3-Dimensional Integrated Circuits (3DICs). The method considers the evolution of the system during isothermal solidification at 250 °C for the case of two different interlayer thicknesses (5 and 10 µm). The Cu/Sn/Cu interconnection structure is important for the micro packaging in the 3DIC systems. The thermodynamics and kinetics of growth of η-$ Cu_{6} $$ Sn_{5} $ and ɛ-$ Cu_{3} $Sn interfacial intermetallics (IMCs) are investigated by coupling the multi-phase field method with CALPHAD approach. The interaction of the phases is addressed by assuming a metastable condition for the Cu/Sn reacting system. The simulations start with the nucleation and rapid growth of the η-$ Cu_{6} $$ Sn_{5} $ IMCs at the initial stage, the nucleation and growth of ɛ-$ Cu_{3} $Sn IMCs at the intermediate stage ending with the full consumption of Sn layer and the domination of ɛ-$ Cu_{3} $Sn IMCs at the later stages. In addition, comparing different diffusion rates through the grain boundary of η phases show that their morphology is the direct consequence of balance of kinetic forces. This work provides a valuable understanding of the dominant mechanisms for mass transport in the Cu/Sn/Cu low volume interconnections. The results show that the phase field modeling is successful in addressing the morphological evolution and growth of IMC layers in the 3DIC joint formation. 3DIC micro-packaging technology chemical equilibrium morphology phase field modeling phase transformation Arroyave, Raymundo aut Enthalten in Journal of phase equilibria and diffusion Springer US, 2004 37(2016), 4 vom: 16. Juni, Seite 469-480 (DE-627)393353648 (DE-600)2140016-7 (DE-576)113026102 1547-7037 nnns volume:37 year:2016 number:4 day:16 month:06 pages:469-480 https://doi.org/10.1007/s11669-016-0475-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_30 GBV_ILN_70 51.10$jMetallphysik VZ 106417843 (DE-625)106417843 AR 37 2016 4 16 06 469-480 |
language |
English |
source |
Enthalten in Journal of phase equilibria and diffusion 37(2016), 4 vom: 16. Juni, Seite 469-480 volume:37 year:2016 number:4 day:16 month:06 pages:469-480 |
sourceStr |
Enthalten in Journal of phase equilibria and diffusion 37(2016), 4 vom: 16. Juni, Seite 469-480 volume:37 year:2016 number:4 day:16 month:06 pages:469-480 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
3DIC micro-packaging technology chemical equilibrium morphology phase field modeling phase transformation |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Journal of phase equilibria and diffusion |
authorswithroles_txt_mv |
Attari, Vahid @@aut@@ Arroyave, Raymundo @@aut@@ |
publishDateDaySort_date |
2016-06-16T00:00:00Z |
hierarchy_top_id |
393353648 |
dewey-sort |
3620 |
id |
OLC202676607X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC202676607X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230517165337.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11669-016-0475-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC202676607X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11669-016-0475-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">660</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.10$jMetallphysik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Attari, Vahid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phase Field Modeling of Joint Formation During Isothermal Solidification in 3DIC Micro Packaging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© ASM International 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, a computational multi-phase field approach is utilized to study the formation of the Cu/Sn/Cu micro-joint in 3-Dimensional Integrated Circuits (3DICs). The method considers the evolution of the system during isothermal solidification at 250 °C for the case of two different interlayer thicknesses (5 and 10 µm). The Cu/Sn/Cu interconnection structure is important for the micro packaging in the 3DIC systems. The thermodynamics and kinetics of growth of η-$ Cu_{6} $$ Sn_{5} $ and ɛ-$ Cu_{3} $Sn interfacial intermetallics (IMCs) are investigated by coupling the multi-phase field method with CALPHAD approach. The interaction of the phases is addressed by assuming a metastable condition for the Cu/Sn reacting system. The simulations start with the nucleation and rapid growth of the η-$ Cu_{6} $$ Sn_{5} $ IMCs at the initial stage, the nucleation and growth of ɛ-$ Cu_{3} $Sn IMCs at the intermediate stage ending with the full consumption of Sn layer and the domination of ɛ-$ Cu_{3} $Sn IMCs at the later stages. In addition, comparing different diffusion rates through the grain boundary of η phases show that their morphology is the direct consequence of balance of kinetic forces. This work provides a valuable understanding of the dominant mechanisms for mass transport in the Cu/Sn/Cu low volume interconnections. The results show that the phase field modeling is successful in addressing the morphological evolution and growth of IMC layers in the 3DIC joint formation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3DIC micro-packaging technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemical equilibrium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">morphology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase field modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase transformation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arroyave, Raymundo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of phase equilibria and diffusion</subfield><subfield code="d">Springer US, 2004</subfield><subfield code="g">37(2016), 4 vom: 16. Juni, Seite 469-480</subfield><subfield code="w">(DE-627)393353648</subfield><subfield code="w">(DE-600)2140016-7</subfield><subfield code="w">(DE-576)113026102</subfield><subfield code="x">1547-7037</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">day:16</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:469-480</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11669-016-0475-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.10$jMetallphysik</subfield><subfield code="q">VZ</subfield><subfield code="0">106417843</subfield><subfield code="0">(DE-625)106417843</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="b">16</subfield><subfield code="c">06</subfield><subfield code="h">469-480</subfield></datafield></record></collection>
|
author |
Attari, Vahid |
spellingShingle |
Attari, Vahid ddc 620 bkl 51.10$jMetallphysik misc 3DIC micro-packaging technology misc chemical equilibrium misc morphology misc phase field modeling misc phase transformation Phase Field Modeling of Joint Formation During Isothermal Solidification in 3DIC Micro Packaging |
authorStr |
Attari, Vahid |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)393353648 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 660 - Chemical engineering 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1547-7037 |
topic_title |
620 660 670 VZ 51.10$jMetallphysik bkl Phase Field Modeling of Joint Formation During Isothermal Solidification in 3DIC Micro Packaging 3DIC micro-packaging technology chemical equilibrium morphology phase field modeling phase transformation |
topic |
ddc 620 bkl 51.10$jMetallphysik misc 3DIC micro-packaging technology misc chemical equilibrium misc morphology misc phase field modeling misc phase transformation |
topic_unstemmed |
ddc 620 bkl 51.10$jMetallphysik misc 3DIC micro-packaging technology misc chemical equilibrium misc morphology misc phase field modeling misc phase transformation |
topic_browse |
ddc 620 bkl 51.10$jMetallphysik misc 3DIC micro-packaging technology misc chemical equilibrium misc morphology misc phase field modeling misc phase transformation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of phase equilibria and diffusion |
hierarchy_parent_id |
393353648 |
dewey-tens |
620 - Engineering 660 - Chemical engineering 670 - Manufacturing |
hierarchy_top_title |
Journal of phase equilibria and diffusion |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)393353648 (DE-600)2140016-7 (DE-576)113026102 |
title |
Phase Field Modeling of Joint Formation During Isothermal Solidification in 3DIC Micro Packaging |
ctrlnum |
(DE-627)OLC202676607X (DE-He213)s11669-016-0475-x-p |
title_full |
Phase Field Modeling of Joint Formation During Isothermal Solidification in 3DIC Micro Packaging |
author_sort |
Attari, Vahid |
journal |
Journal of phase equilibria and diffusion |
journalStr |
Journal of phase equilibria and diffusion |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
469 |
author_browse |
Attari, Vahid Arroyave, Raymundo |
container_volume |
37 |
class |
620 660 670 VZ 51.10$jMetallphysik bkl |
format_se |
Aufsätze |
author-letter |
Attari, Vahid |
doi_str_mv |
10.1007/s11669-016-0475-x |
normlink |
106417843 |
normlink_prefix_str_mv |
106417843 (DE-625)106417843 |
dewey-full |
620 660 670 |
title_sort |
phase field modeling of joint formation during isothermal solidification in 3dic micro packaging |
title_auth |
Phase Field Modeling of Joint Formation During Isothermal Solidification in 3DIC Micro Packaging |
abstract |
Abstract In this paper, a computational multi-phase field approach is utilized to study the formation of the Cu/Sn/Cu micro-joint in 3-Dimensional Integrated Circuits (3DICs). The method considers the evolution of the system during isothermal solidification at 250 °C for the case of two different interlayer thicknesses (5 and 10 µm). The Cu/Sn/Cu interconnection structure is important for the micro packaging in the 3DIC systems. The thermodynamics and kinetics of growth of η-$ Cu_{6} $$ Sn_{5} $ and ɛ-$ Cu_{3} $Sn interfacial intermetallics (IMCs) are investigated by coupling the multi-phase field method with CALPHAD approach. The interaction of the phases is addressed by assuming a metastable condition for the Cu/Sn reacting system. The simulations start with the nucleation and rapid growth of the η-$ Cu_{6} $$ Sn_{5} $ IMCs at the initial stage, the nucleation and growth of ɛ-$ Cu_{3} $Sn IMCs at the intermediate stage ending with the full consumption of Sn layer and the domination of ɛ-$ Cu_{3} $Sn IMCs at the later stages. In addition, comparing different diffusion rates through the grain boundary of η phases show that their morphology is the direct consequence of balance of kinetic forces. This work provides a valuable understanding of the dominant mechanisms for mass transport in the Cu/Sn/Cu low volume interconnections. The results show that the phase field modeling is successful in addressing the morphological evolution and growth of IMC layers in the 3DIC joint formation. © ASM International 2016 |
abstractGer |
Abstract In this paper, a computational multi-phase field approach is utilized to study the formation of the Cu/Sn/Cu micro-joint in 3-Dimensional Integrated Circuits (3DICs). The method considers the evolution of the system during isothermal solidification at 250 °C for the case of two different interlayer thicknesses (5 and 10 µm). The Cu/Sn/Cu interconnection structure is important for the micro packaging in the 3DIC systems. The thermodynamics and kinetics of growth of η-$ Cu_{6} $$ Sn_{5} $ and ɛ-$ Cu_{3} $Sn interfacial intermetallics (IMCs) are investigated by coupling the multi-phase field method with CALPHAD approach. The interaction of the phases is addressed by assuming a metastable condition for the Cu/Sn reacting system. The simulations start with the nucleation and rapid growth of the η-$ Cu_{6} $$ Sn_{5} $ IMCs at the initial stage, the nucleation and growth of ɛ-$ Cu_{3} $Sn IMCs at the intermediate stage ending with the full consumption of Sn layer and the domination of ɛ-$ Cu_{3} $Sn IMCs at the later stages. In addition, comparing different diffusion rates through the grain boundary of η phases show that their morphology is the direct consequence of balance of kinetic forces. This work provides a valuable understanding of the dominant mechanisms for mass transport in the Cu/Sn/Cu low volume interconnections. The results show that the phase field modeling is successful in addressing the morphological evolution and growth of IMC layers in the 3DIC joint formation. © ASM International 2016 |
abstract_unstemmed |
Abstract In this paper, a computational multi-phase field approach is utilized to study the formation of the Cu/Sn/Cu micro-joint in 3-Dimensional Integrated Circuits (3DICs). The method considers the evolution of the system during isothermal solidification at 250 °C for the case of two different interlayer thicknesses (5 and 10 µm). The Cu/Sn/Cu interconnection structure is important for the micro packaging in the 3DIC systems. The thermodynamics and kinetics of growth of η-$ Cu_{6} $$ Sn_{5} $ and ɛ-$ Cu_{3} $Sn interfacial intermetallics (IMCs) are investigated by coupling the multi-phase field method with CALPHAD approach. The interaction of the phases is addressed by assuming a metastable condition for the Cu/Sn reacting system. The simulations start with the nucleation and rapid growth of the η-$ Cu_{6} $$ Sn_{5} $ IMCs at the initial stage, the nucleation and growth of ɛ-$ Cu_{3} $Sn IMCs at the intermediate stage ending with the full consumption of Sn layer and the domination of ɛ-$ Cu_{3} $Sn IMCs at the later stages. In addition, comparing different diffusion rates through the grain boundary of η phases show that their morphology is the direct consequence of balance of kinetic forces. This work provides a valuable understanding of the dominant mechanisms for mass transport in the Cu/Sn/Cu low volume interconnections. The results show that the phase field modeling is successful in addressing the morphological evolution and growth of IMC layers in the 3DIC joint formation. © ASM International 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_30 GBV_ILN_70 |
container_issue |
4 |
title_short |
Phase Field Modeling of Joint Formation During Isothermal Solidification in 3DIC Micro Packaging |
url |
https://doi.org/10.1007/s11669-016-0475-x |
remote_bool |
false |
author2 |
Arroyave, Raymundo |
author2Str |
Arroyave, Raymundo |
ppnlink |
393353648 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11669-016-0475-x |
up_date |
2024-07-04T04:44:35.334Z |
_version_ |
1803622311870332928 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC202676607X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230517165337.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11669-016-0475-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC202676607X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11669-016-0475-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">660</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.10$jMetallphysik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Attari, Vahid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phase Field Modeling of Joint Formation During Isothermal Solidification in 3DIC Micro Packaging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© ASM International 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, a computational multi-phase field approach is utilized to study the formation of the Cu/Sn/Cu micro-joint in 3-Dimensional Integrated Circuits (3DICs). The method considers the evolution of the system during isothermal solidification at 250 °C for the case of two different interlayer thicknesses (5 and 10 µm). The Cu/Sn/Cu interconnection structure is important for the micro packaging in the 3DIC systems. The thermodynamics and kinetics of growth of η-$ Cu_{6} $$ Sn_{5} $ and ɛ-$ Cu_{3} $Sn interfacial intermetallics (IMCs) are investigated by coupling the multi-phase field method with CALPHAD approach. The interaction of the phases is addressed by assuming a metastable condition for the Cu/Sn reacting system. The simulations start with the nucleation and rapid growth of the η-$ Cu_{6} $$ Sn_{5} $ IMCs at the initial stage, the nucleation and growth of ɛ-$ Cu_{3} $Sn IMCs at the intermediate stage ending with the full consumption of Sn layer and the domination of ɛ-$ Cu_{3} $Sn IMCs at the later stages. In addition, comparing different diffusion rates through the grain boundary of η phases show that their morphology is the direct consequence of balance of kinetic forces. This work provides a valuable understanding of the dominant mechanisms for mass transport in the Cu/Sn/Cu low volume interconnections. The results show that the phase field modeling is successful in addressing the morphological evolution and growth of IMC layers in the 3DIC joint formation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3DIC micro-packaging technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemical equilibrium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">morphology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase field modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phase transformation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arroyave, Raymundo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of phase equilibria and diffusion</subfield><subfield code="d">Springer US, 2004</subfield><subfield code="g">37(2016), 4 vom: 16. Juni, Seite 469-480</subfield><subfield code="w">(DE-627)393353648</subfield><subfield code="w">(DE-600)2140016-7</subfield><subfield code="w">(DE-576)113026102</subfield><subfield code="x">1547-7037</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">day:16</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:469-480</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11669-016-0475-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.10$jMetallphysik</subfield><subfield code="q">VZ</subfield><subfield code="0">106417843</subfield><subfield code="0">(DE-625)106417843</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="b">16</subfield><subfield code="c">06</subfield><subfield code="h">469-480</subfield></datafield></record></collection>
|
score |
7.4008274 |