The Quintic Grassmannian $$G_{1,4,2}$$ in PG(9, 2)
Abstract The 155 points of the Grassmannian $$G_{1,4,2}$$ of lines of PG (4, 2) = $$\mathbb{P}V\left( {5,2} \right)$$ are those points $$x \in {\text{PG}}\left( {{\text{9,2}}} \right) = \mathbb{P}\left( { \wedge {}^2V\left( {5,2} \right)} \right)$$ which satisfy a certain quintic equation Q(x) = 0....
Ausführliche Beschreibung
Autor*in: |
Shaw, R. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2004 |
---|
Anmerkung: |
© Kluwer Academic Publishers 2004 |
---|
Übergeordnetes Werk: |
Enthalten in: Designs, codes and cryptography - Kluwer Academic Publishers, 1991, 32(2004), 1-3 vom: Mai, Seite 381-396 |
---|---|
Übergeordnetes Werk: |
volume:32 ; year:2004 ; number:1-3 ; month:05 ; pages:381-396 |
Links: |
---|
DOI / URN: |
10.1023/B:DESI.0000029236.10701.61 |
---|
Katalog-ID: |
OLC2027284486 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2027284486 | ||
003 | DE-627 | ||
005 | 20230503040249.0 | ||
007 | tu | ||
008 | 200819s2004 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/B:DESI.0000029236.10701.61 |2 doi | |
035 | |a (DE-627)OLC2027284486 | ||
035 | |a (DE-He213)B:DESI.0000029236.10701.61-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Shaw, R. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The Quintic Grassmannian $$G_{1,4,2}$$ in PG(9, 2) |
264 | 1 | |c 2004 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Kluwer Academic Publishers 2004 | ||
520 | |a Abstract The 155 points of the Grassmannian $$G_{1,4,2}$$ of lines of PG (4, 2) = $$\mathbb{P}V\left( {5,2} \right)$$ are those points $$x \in {\text{PG}}\left( {{\text{9,2}}} \right) = \mathbb{P}\left( { \wedge {}^2V\left( {5,2} \right)} \right)$$ which satisfy a certain quintic equation Q(x) = 0. (The quintic polynomial Q is given explicitly in Shaw and Gordon [3].) A projective flat X$$ \subset $$ PG (9, 2) will be termed odd or even according as X intersects $$G_{1,4,2}$$ in an odd or even number of points. Let $$Q^\ddag \left( {x_1 ,...,x_5 } \right)$$ denote the alternating quinquelinear form obtained by completely polarizing Q. We define the associate Y = X# of a r-flat X$$ \subset $$ PG (9, 2) by $$Y = \left\{ {y \in {\text{PG}}\left( {n{\text{,2}}} \right)\left| {Q^\ddag \left( {x_1 ,x_{2,} ,x_3 ,x_4 ,y} \right)} \right. = 0,\quad {\text{for}}\;{\text{all}}\,x_1 ,x_{2,} ,x_3 ,x_4 \in X} \right\}.$$. Because $$Q^\ddag$$ is quinquelinear, the associate X# of an r-flat X is an s-flat for some s. The cases where r = 4 are of particular interest: if X is an odd 4-flat then X$$ \subseteq$$X# while if X is an even 4-flat then X# is necessarily also a 4-flat which is moreover disjoint from X. We give an example of an odd 4-flat X which is self-associate: X# = X. An example of an even 4-flat X such that $$\left( {X^\# } \right)^\$$# = X is provided by any 4-flat X which is external to $$G_{1,4,2}$$. However, it appears that the two possibilities just illustrated, namely X# = X for an odd 4-flat and $$\left( {X^\# } \right)^\$$# = X for an even 4-flat, are the exception rather than the rule. Indeed, we provide examples of odd 4-flats for which X# = PG (9, 2) and of even 4-flats for which $${X^{\# \# \# } }$$ = X. | ||
700 | 1 | |a Gordon, N. A. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Designs, codes and cryptography |d Kluwer Academic Publishers, 1991 |g 32(2004), 1-3 vom: Mai, Seite 381-396 |w (DE-627)130994197 |w (DE-600)1082042-5 |w (DE-576)029154375 |x 0925-1022 |7 nnns |
773 | 1 | 8 | |g volume:32 |g year:2004 |g number:1-3 |g month:05 |g pages:381-396 |
856 | 4 | 1 | |u https://doi.org/10.1023/B:DESI.0000029236.10701.61 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2244 | ||
912 | |a GBV_ILN_4126 | ||
951 | |a AR | ||
952 | |d 32 |j 2004 |e 1-3 |c 05 |h 381-396 |
author_variant |
r s rs n a g na nag |
---|---|
matchkey_str |
article:09251022:2004----::hqitcrsmnin_ |
hierarchy_sort_str |
2004 |
publishDate |
2004 |
allfields |
10.1023/B:DESI.0000029236.10701.61 doi (DE-627)OLC2027284486 (DE-He213)B:DESI.0000029236.10701.61-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Shaw, R. verfasserin aut The Quintic Grassmannian $$G_{1,4,2}$$ in PG(9, 2) 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2004 Abstract The 155 points of the Grassmannian $$G_{1,4,2}$$ of lines of PG (4, 2) = $$\mathbb{P}V\left( {5,2} \right)$$ are those points $$x \in {\text{PG}}\left( {{\text{9,2}}} \right) = \mathbb{P}\left( { \wedge {}^2V\left( {5,2} \right)} \right)$$ which satisfy a certain quintic equation Q(x) = 0. (The quintic polynomial Q is given explicitly in Shaw and Gordon [3].) A projective flat X$$ \subset $$ PG (9, 2) will be termed odd or even according as X intersects $$G_{1,4,2}$$ in an odd or even number of points. Let $$Q^\ddag \left( {x_1 ,...,x_5 } \right)$$ denote the alternating quinquelinear form obtained by completely polarizing Q. We define the associate Y = X# of a r-flat X$$ \subset $$ PG (9, 2) by $$Y = \left\{ {y \in {\text{PG}}\left( {n{\text{,2}}} \right)\left| {Q^\ddag \left( {x_1 ,x_{2,} ,x_3 ,x_4 ,y} \right)} \right. = 0,\quad {\text{for}}\;{\text{all}}\,x_1 ,x_{2,} ,x_3 ,x_4 \in X} \right\}.$$. Because $$Q^\ddag$$ is quinquelinear, the associate X# of an r-flat X is an s-flat for some s. The cases where r = 4 are of particular interest: if X is an odd 4-flat then X$$ \subseteq$$X# while if X is an even 4-flat then X# is necessarily also a 4-flat which is moreover disjoint from X. We give an example of an odd 4-flat X which is self-associate: X# = X. An example of an even 4-flat X such that $$\left( {X^\# } \right)^\$$# = X is provided by any 4-flat X which is external to $$G_{1,4,2}$$. However, it appears that the two possibilities just illustrated, namely X# = X for an odd 4-flat and $$\left( {X^\# } \right)^\$$# = X for an even 4-flat, are the exception rather than the rule. Indeed, we provide examples of odd 4-flats for which X# = PG (9, 2) and of even 4-flats for which $${X^{\# \# \# } }$$ = X. Gordon, N. A. aut Enthalten in Designs, codes and cryptography Kluwer Academic Publishers, 1991 32(2004), 1-3 vom: Mai, Seite 381-396 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:32 year:2004 number:1-3 month:05 pages:381-396 https://doi.org/10.1023/B:DESI.0000029236.10701.61 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4126 AR 32 2004 1-3 05 381-396 |
spelling |
10.1023/B:DESI.0000029236.10701.61 doi (DE-627)OLC2027284486 (DE-He213)B:DESI.0000029236.10701.61-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Shaw, R. verfasserin aut The Quintic Grassmannian $$G_{1,4,2}$$ in PG(9, 2) 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2004 Abstract The 155 points of the Grassmannian $$G_{1,4,2}$$ of lines of PG (4, 2) = $$\mathbb{P}V\left( {5,2} \right)$$ are those points $$x \in {\text{PG}}\left( {{\text{9,2}}} \right) = \mathbb{P}\left( { \wedge {}^2V\left( {5,2} \right)} \right)$$ which satisfy a certain quintic equation Q(x) = 0. (The quintic polynomial Q is given explicitly in Shaw and Gordon [3].) A projective flat X$$ \subset $$ PG (9, 2) will be termed odd or even according as X intersects $$G_{1,4,2}$$ in an odd or even number of points. Let $$Q^\ddag \left( {x_1 ,...,x_5 } \right)$$ denote the alternating quinquelinear form obtained by completely polarizing Q. We define the associate Y = X# of a r-flat X$$ \subset $$ PG (9, 2) by $$Y = \left\{ {y \in {\text{PG}}\left( {n{\text{,2}}} \right)\left| {Q^\ddag \left( {x_1 ,x_{2,} ,x_3 ,x_4 ,y} \right)} \right. = 0,\quad {\text{for}}\;{\text{all}}\,x_1 ,x_{2,} ,x_3 ,x_4 \in X} \right\}.$$. Because $$Q^\ddag$$ is quinquelinear, the associate X# of an r-flat X is an s-flat for some s. The cases where r = 4 are of particular interest: if X is an odd 4-flat then X$$ \subseteq$$X# while if X is an even 4-flat then X# is necessarily also a 4-flat which is moreover disjoint from X. We give an example of an odd 4-flat X which is self-associate: X# = X. An example of an even 4-flat X such that $$\left( {X^\# } \right)^\$$# = X is provided by any 4-flat X which is external to $$G_{1,4,2}$$. However, it appears that the two possibilities just illustrated, namely X# = X for an odd 4-flat and $$\left( {X^\# } \right)^\$$# = X for an even 4-flat, are the exception rather than the rule. Indeed, we provide examples of odd 4-flats for which X# = PG (9, 2) and of even 4-flats for which $${X^{\# \# \# } }$$ = X. Gordon, N. A. aut Enthalten in Designs, codes and cryptography Kluwer Academic Publishers, 1991 32(2004), 1-3 vom: Mai, Seite 381-396 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:32 year:2004 number:1-3 month:05 pages:381-396 https://doi.org/10.1023/B:DESI.0000029236.10701.61 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4126 AR 32 2004 1-3 05 381-396 |
allfields_unstemmed |
10.1023/B:DESI.0000029236.10701.61 doi (DE-627)OLC2027284486 (DE-He213)B:DESI.0000029236.10701.61-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Shaw, R. verfasserin aut The Quintic Grassmannian $$G_{1,4,2}$$ in PG(9, 2) 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2004 Abstract The 155 points of the Grassmannian $$G_{1,4,2}$$ of lines of PG (4, 2) = $$\mathbb{P}V\left( {5,2} \right)$$ are those points $$x \in {\text{PG}}\left( {{\text{9,2}}} \right) = \mathbb{P}\left( { \wedge {}^2V\left( {5,2} \right)} \right)$$ which satisfy a certain quintic equation Q(x) = 0. (The quintic polynomial Q is given explicitly in Shaw and Gordon [3].) A projective flat X$$ \subset $$ PG (9, 2) will be termed odd or even according as X intersects $$G_{1,4,2}$$ in an odd or even number of points. Let $$Q^\ddag \left( {x_1 ,...,x_5 } \right)$$ denote the alternating quinquelinear form obtained by completely polarizing Q. We define the associate Y = X# of a r-flat X$$ \subset $$ PG (9, 2) by $$Y = \left\{ {y \in {\text{PG}}\left( {n{\text{,2}}} \right)\left| {Q^\ddag \left( {x_1 ,x_{2,} ,x_3 ,x_4 ,y} \right)} \right. = 0,\quad {\text{for}}\;{\text{all}}\,x_1 ,x_{2,} ,x_3 ,x_4 \in X} \right\}.$$. Because $$Q^\ddag$$ is quinquelinear, the associate X# of an r-flat X is an s-flat for some s. The cases where r = 4 are of particular interest: if X is an odd 4-flat then X$$ \subseteq$$X# while if X is an even 4-flat then X# is necessarily also a 4-flat which is moreover disjoint from X. We give an example of an odd 4-flat X which is self-associate: X# = X. An example of an even 4-flat X such that $$\left( {X^\# } \right)^\$$# = X is provided by any 4-flat X which is external to $$G_{1,4,2}$$. However, it appears that the two possibilities just illustrated, namely X# = X for an odd 4-flat and $$\left( {X^\# } \right)^\$$# = X for an even 4-flat, are the exception rather than the rule. Indeed, we provide examples of odd 4-flats for which X# = PG (9, 2) and of even 4-flats for which $${X^{\# \# \# } }$$ = X. Gordon, N. A. aut Enthalten in Designs, codes and cryptography Kluwer Academic Publishers, 1991 32(2004), 1-3 vom: Mai, Seite 381-396 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:32 year:2004 number:1-3 month:05 pages:381-396 https://doi.org/10.1023/B:DESI.0000029236.10701.61 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4126 AR 32 2004 1-3 05 381-396 |
allfieldsGer |
10.1023/B:DESI.0000029236.10701.61 doi (DE-627)OLC2027284486 (DE-He213)B:DESI.0000029236.10701.61-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Shaw, R. verfasserin aut The Quintic Grassmannian $$G_{1,4,2}$$ in PG(9, 2) 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2004 Abstract The 155 points of the Grassmannian $$G_{1,4,2}$$ of lines of PG (4, 2) = $$\mathbb{P}V\left( {5,2} \right)$$ are those points $$x \in {\text{PG}}\left( {{\text{9,2}}} \right) = \mathbb{P}\left( { \wedge {}^2V\left( {5,2} \right)} \right)$$ which satisfy a certain quintic equation Q(x) = 0. (The quintic polynomial Q is given explicitly in Shaw and Gordon [3].) A projective flat X$$ \subset $$ PG (9, 2) will be termed odd or even according as X intersects $$G_{1,4,2}$$ in an odd or even number of points. Let $$Q^\ddag \left( {x_1 ,...,x_5 } \right)$$ denote the alternating quinquelinear form obtained by completely polarizing Q. We define the associate Y = X# of a r-flat X$$ \subset $$ PG (9, 2) by $$Y = \left\{ {y \in {\text{PG}}\left( {n{\text{,2}}} \right)\left| {Q^\ddag \left( {x_1 ,x_{2,} ,x_3 ,x_4 ,y} \right)} \right. = 0,\quad {\text{for}}\;{\text{all}}\,x_1 ,x_{2,} ,x_3 ,x_4 \in X} \right\}.$$. Because $$Q^\ddag$$ is quinquelinear, the associate X# of an r-flat X is an s-flat for some s. The cases where r = 4 are of particular interest: if X is an odd 4-flat then X$$ \subseteq$$X# while if X is an even 4-flat then X# is necessarily also a 4-flat which is moreover disjoint from X. We give an example of an odd 4-flat X which is self-associate: X# = X. An example of an even 4-flat X such that $$\left( {X^\# } \right)^\$$# = X is provided by any 4-flat X which is external to $$G_{1,4,2}$$. However, it appears that the two possibilities just illustrated, namely X# = X for an odd 4-flat and $$\left( {X^\# } \right)^\$$# = X for an even 4-flat, are the exception rather than the rule. Indeed, we provide examples of odd 4-flats for which X# = PG (9, 2) and of even 4-flats for which $${X^{\# \# \# } }$$ = X. Gordon, N. A. aut Enthalten in Designs, codes and cryptography Kluwer Academic Publishers, 1991 32(2004), 1-3 vom: Mai, Seite 381-396 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:32 year:2004 number:1-3 month:05 pages:381-396 https://doi.org/10.1023/B:DESI.0000029236.10701.61 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4126 AR 32 2004 1-3 05 381-396 |
allfieldsSound |
10.1023/B:DESI.0000029236.10701.61 doi (DE-627)OLC2027284486 (DE-He213)B:DESI.0000029236.10701.61-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Shaw, R. verfasserin aut The Quintic Grassmannian $$G_{1,4,2}$$ in PG(9, 2) 2004 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2004 Abstract The 155 points of the Grassmannian $$G_{1,4,2}$$ of lines of PG (4, 2) = $$\mathbb{P}V\left( {5,2} \right)$$ are those points $$x \in {\text{PG}}\left( {{\text{9,2}}} \right) = \mathbb{P}\left( { \wedge {}^2V\left( {5,2} \right)} \right)$$ which satisfy a certain quintic equation Q(x) = 0. (The quintic polynomial Q is given explicitly in Shaw and Gordon [3].) A projective flat X$$ \subset $$ PG (9, 2) will be termed odd or even according as X intersects $$G_{1,4,2}$$ in an odd or even number of points. Let $$Q^\ddag \left( {x_1 ,...,x_5 } \right)$$ denote the alternating quinquelinear form obtained by completely polarizing Q. We define the associate Y = X# of a r-flat X$$ \subset $$ PG (9, 2) by $$Y = \left\{ {y \in {\text{PG}}\left( {n{\text{,2}}} \right)\left| {Q^\ddag \left( {x_1 ,x_{2,} ,x_3 ,x_4 ,y} \right)} \right. = 0,\quad {\text{for}}\;{\text{all}}\,x_1 ,x_{2,} ,x_3 ,x_4 \in X} \right\}.$$. Because $$Q^\ddag$$ is quinquelinear, the associate X# of an r-flat X is an s-flat for some s. The cases where r = 4 are of particular interest: if X is an odd 4-flat then X$$ \subseteq$$X# while if X is an even 4-flat then X# is necessarily also a 4-flat which is moreover disjoint from X. We give an example of an odd 4-flat X which is self-associate: X# = X. An example of an even 4-flat X such that $$\left( {X^\# } \right)^\$$# = X is provided by any 4-flat X which is external to $$G_{1,4,2}$$. However, it appears that the two possibilities just illustrated, namely X# = X for an odd 4-flat and $$\left( {X^\# } \right)^\$$# = X for an even 4-flat, are the exception rather than the rule. Indeed, we provide examples of odd 4-flats for which X# = PG (9, 2) and of even 4-flats for which $${X^{\# \# \# } }$$ = X. Gordon, N. A. aut Enthalten in Designs, codes and cryptography Kluwer Academic Publishers, 1991 32(2004), 1-3 vom: Mai, Seite 381-396 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:32 year:2004 number:1-3 month:05 pages:381-396 https://doi.org/10.1023/B:DESI.0000029236.10701.61 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4126 AR 32 2004 1-3 05 381-396 |
language |
English |
source |
Enthalten in Designs, codes and cryptography 32(2004), 1-3 vom: Mai, Seite 381-396 volume:32 year:2004 number:1-3 month:05 pages:381-396 |
sourceStr |
Enthalten in Designs, codes and cryptography 32(2004), 1-3 vom: Mai, Seite 381-396 volume:32 year:2004 number:1-3 month:05 pages:381-396 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Designs, codes and cryptography |
authorswithroles_txt_mv |
Shaw, R. @@aut@@ Gordon, N. A. @@aut@@ |
publishDateDaySort_date |
2004-05-01T00:00:00Z |
hierarchy_top_id |
130994197 |
dewey-sort |
14 |
id |
OLC2027284486 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2027284486</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503040249.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/B:DESI.0000029236.10701.61</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2027284486</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)B:DESI.0000029236.10701.61-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shaw, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Quintic Grassmannian $$G_{1,4,2}$$ in PG(9, 2)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 2004</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The 155 points of the Grassmannian $$G_{1,4,2}$$ of lines of PG (4, 2) = $$\mathbb{P}V\left( {5,2} \right)$$ are those points $$x \in {\text{PG}}\left( {{\text{9,2}}} \right) = \mathbb{P}\left( { \wedge {}^2V\left( {5,2} \right)} \right)$$ which satisfy a certain quintic equation Q(x) = 0. (The quintic polynomial Q is given explicitly in Shaw and Gordon [3].) A projective flat X$$ \subset $$ PG (9, 2) will be termed odd or even according as X intersects $$G_{1,4,2}$$ in an odd or even number of points. Let $$Q^\ddag \left( {x_1 ,...,x_5 } \right)$$ denote the alternating quinquelinear form obtained by completely polarizing Q. We define the associate Y = X# of a r-flat X$$ \subset $$ PG (9, 2) by $$Y = \left\{ {y \in {\text{PG}}\left( {n{\text{,2}}} \right)\left| {Q^\ddag \left( {x_1 ,x_{2,} ,x_3 ,x_4 ,y} \right)} \right. = 0,\quad {\text{for}}\;{\text{all}}\,x_1 ,x_{2,} ,x_3 ,x_4 \in X} \right\}.$$. Because $$Q^\ddag$$ is quinquelinear, the associate X# of an r-flat X is an s-flat for some s. The cases where r = 4 are of particular interest: if X is an odd 4-flat then X$$ \subseteq$$X# while if X is an even 4-flat then X# is necessarily also a 4-flat which is moreover disjoint from X. We give an example of an odd 4-flat X which is self-associate: X# = X. An example of an even 4-flat X such that $$\left( {X^\# } \right)^\$$# = X is provided by any 4-flat X which is external to $$G_{1,4,2}$$. However, it appears that the two possibilities just illustrated, namely X# = X for an odd 4-flat and $$\left( {X^\# } \right)^\$$# = X for an even 4-flat, are the exception rather than the rule. Indeed, we provide examples of odd 4-flats for which X# = PG (9, 2) and of even 4-flats for which $${X^{\# \# \# } }$$ = X.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gordon, N. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Designs, codes and cryptography</subfield><subfield code="d">Kluwer Academic Publishers, 1991</subfield><subfield code="g">32(2004), 1-3 vom: Mai, Seite 381-396</subfield><subfield code="w">(DE-627)130994197</subfield><subfield code="w">(DE-600)1082042-5</subfield><subfield code="w">(DE-576)029154375</subfield><subfield code="x">0925-1022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:1-3</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:381-396</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/B:DESI.0000029236.10701.61</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2004</subfield><subfield code="e">1-3</subfield><subfield code="c">05</subfield><subfield code="h">381-396</subfield></datafield></record></collection>
|
author |
Shaw, R. |
spellingShingle |
Shaw, R. ddc 004 ssgn 17,1 The Quintic Grassmannian $$G_{1,4,2}$$ in PG(9, 2) |
authorStr |
Shaw, R. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130994197 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0925-1022 |
topic_title |
004 VZ 17,1 ssgn The Quintic Grassmannian $$G_{1,4,2}$$ in PG(9, 2) |
topic |
ddc 004 ssgn 17,1 |
topic_unstemmed |
ddc 004 ssgn 17,1 |
topic_browse |
ddc 004 ssgn 17,1 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Designs, codes and cryptography |
hierarchy_parent_id |
130994197 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Designs, codes and cryptography |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 |
title |
The Quintic Grassmannian $$G_{1,4,2}$$ in PG(9, 2) |
ctrlnum |
(DE-627)OLC2027284486 (DE-He213)B:DESI.0000029236.10701.61-p |
title_full |
The Quintic Grassmannian $$G_{1,4,2}$$ in PG(9, 2) |
author_sort |
Shaw, R. |
journal |
Designs, codes and cryptography |
journalStr |
Designs, codes and cryptography |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2004 |
contenttype_str_mv |
txt |
container_start_page |
381 |
author_browse |
Shaw, R. Gordon, N. A. |
container_volume |
32 |
class |
004 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Shaw, R. |
doi_str_mv |
10.1023/B:DESI.0000029236.10701.61 |
dewey-full |
004 |
title_sort |
the quintic grassmannian $$g_{1,4,2}$$ in pg(9, 2) |
title_auth |
The Quintic Grassmannian $$G_{1,4,2}$$ in PG(9, 2) |
abstract |
Abstract The 155 points of the Grassmannian $$G_{1,4,2}$$ of lines of PG (4, 2) = $$\mathbb{P}V\left( {5,2} \right)$$ are those points $$x \in {\text{PG}}\left( {{\text{9,2}}} \right) = \mathbb{P}\left( { \wedge {}^2V\left( {5,2} \right)} \right)$$ which satisfy a certain quintic equation Q(x) = 0. (The quintic polynomial Q is given explicitly in Shaw and Gordon [3].) A projective flat X$$ \subset $$ PG (9, 2) will be termed odd or even according as X intersects $$G_{1,4,2}$$ in an odd or even number of points. Let $$Q^\ddag \left( {x_1 ,...,x_5 } \right)$$ denote the alternating quinquelinear form obtained by completely polarizing Q. We define the associate Y = X# of a r-flat X$$ \subset $$ PG (9, 2) by $$Y = \left\{ {y \in {\text{PG}}\left( {n{\text{,2}}} \right)\left| {Q^\ddag \left( {x_1 ,x_{2,} ,x_3 ,x_4 ,y} \right)} \right. = 0,\quad {\text{for}}\;{\text{all}}\,x_1 ,x_{2,} ,x_3 ,x_4 \in X} \right\}.$$. Because $$Q^\ddag$$ is quinquelinear, the associate X# of an r-flat X is an s-flat for some s. The cases where r = 4 are of particular interest: if X is an odd 4-flat then X$$ \subseteq$$X# while if X is an even 4-flat then X# is necessarily also a 4-flat which is moreover disjoint from X. We give an example of an odd 4-flat X which is self-associate: X# = X. An example of an even 4-flat X such that $$\left( {X^\# } \right)^\$$# = X is provided by any 4-flat X which is external to $$G_{1,4,2}$$. However, it appears that the two possibilities just illustrated, namely X# = X for an odd 4-flat and $$\left( {X^\# } \right)^\$$# = X for an even 4-flat, are the exception rather than the rule. Indeed, we provide examples of odd 4-flats for which X# = PG (9, 2) and of even 4-flats for which $${X^{\# \# \# } }$$ = X. © Kluwer Academic Publishers 2004 |
abstractGer |
Abstract The 155 points of the Grassmannian $$G_{1,4,2}$$ of lines of PG (4, 2) = $$\mathbb{P}V\left( {5,2} \right)$$ are those points $$x \in {\text{PG}}\left( {{\text{9,2}}} \right) = \mathbb{P}\left( { \wedge {}^2V\left( {5,2} \right)} \right)$$ which satisfy a certain quintic equation Q(x) = 0. (The quintic polynomial Q is given explicitly in Shaw and Gordon [3].) A projective flat X$$ \subset $$ PG (9, 2) will be termed odd or even according as X intersects $$G_{1,4,2}$$ in an odd or even number of points. Let $$Q^\ddag \left( {x_1 ,...,x_5 } \right)$$ denote the alternating quinquelinear form obtained by completely polarizing Q. We define the associate Y = X# of a r-flat X$$ \subset $$ PG (9, 2) by $$Y = \left\{ {y \in {\text{PG}}\left( {n{\text{,2}}} \right)\left| {Q^\ddag \left( {x_1 ,x_{2,} ,x_3 ,x_4 ,y} \right)} \right. = 0,\quad {\text{for}}\;{\text{all}}\,x_1 ,x_{2,} ,x_3 ,x_4 \in X} \right\}.$$. Because $$Q^\ddag$$ is quinquelinear, the associate X# of an r-flat X is an s-flat for some s. The cases where r = 4 are of particular interest: if X is an odd 4-flat then X$$ \subseteq$$X# while if X is an even 4-flat then X# is necessarily also a 4-flat which is moreover disjoint from X. We give an example of an odd 4-flat X which is self-associate: X# = X. An example of an even 4-flat X such that $$\left( {X^\# } \right)^\$$# = X is provided by any 4-flat X which is external to $$G_{1,4,2}$$. However, it appears that the two possibilities just illustrated, namely X# = X for an odd 4-flat and $$\left( {X^\# } \right)^\$$# = X for an even 4-flat, are the exception rather than the rule. Indeed, we provide examples of odd 4-flats for which X# = PG (9, 2) and of even 4-flats for which $${X^{\# \# \# } }$$ = X. © Kluwer Academic Publishers 2004 |
abstract_unstemmed |
Abstract The 155 points of the Grassmannian $$G_{1,4,2}$$ of lines of PG (4, 2) = $$\mathbb{P}V\left( {5,2} \right)$$ are those points $$x \in {\text{PG}}\left( {{\text{9,2}}} \right) = \mathbb{P}\left( { \wedge {}^2V\left( {5,2} \right)} \right)$$ which satisfy a certain quintic equation Q(x) = 0. (The quintic polynomial Q is given explicitly in Shaw and Gordon [3].) A projective flat X$$ \subset $$ PG (9, 2) will be termed odd or even according as X intersects $$G_{1,4,2}$$ in an odd or even number of points. Let $$Q^\ddag \left( {x_1 ,...,x_5 } \right)$$ denote the alternating quinquelinear form obtained by completely polarizing Q. We define the associate Y = X# of a r-flat X$$ \subset $$ PG (9, 2) by $$Y = \left\{ {y \in {\text{PG}}\left( {n{\text{,2}}} \right)\left| {Q^\ddag \left( {x_1 ,x_{2,} ,x_3 ,x_4 ,y} \right)} \right. = 0,\quad {\text{for}}\;{\text{all}}\,x_1 ,x_{2,} ,x_3 ,x_4 \in X} \right\}.$$. Because $$Q^\ddag$$ is quinquelinear, the associate X# of an r-flat X is an s-flat for some s. The cases where r = 4 are of particular interest: if X is an odd 4-flat then X$$ \subseteq$$X# while if X is an even 4-flat then X# is necessarily also a 4-flat which is moreover disjoint from X. We give an example of an odd 4-flat X which is self-associate: X# = X. An example of an even 4-flat X such that $$\left( {X^\# } \right)^\$$# = X is provided by any 4-flat X which is external to $$G_{1,4,2}$$. However, it appears that the two possibilities just illustrated, namely X# = X for an odd 4-flat and $$\left( {X^\# } \right)^\$$# = X for an even 4-flat, are the exception rather than the rule. Indeed, we provide examples of odd 4-flats for which X# = PG (9, 2) and of even 4-flats for which $${X^{\# \# \# } }$$ = X. © Kluwer Academic Publishers 2004 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_2244 GBV_ILN_4126 |
container_issue |
1-3 |
title_short |
The Quintic Grassmannian $$G_{1,4,2}$$ in PG(9, 2) |
url |
https://doi.org/10.1023/B:DESI.0000029236.10701.61 |
remote_bool |
false |
author2 |
Gordon, N. A. |
author2Str |
Gordon, N. A. |
ppnlink |
130994197 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/B:DESI.0000029236.10701.61 |
up_date |
2024-07-03T14:45:06.690Z |
_version_ |
1803569496529567744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2027284486</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503040249.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2004 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/B:DESI.0000029236.10701.61</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2027284486</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)B:DESI.0000029236.10701.61-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shaw, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Quintic Grassmannian $$G_{1,4,2}$$ in PG(9, 2)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2004</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 2004</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The 155 points of the Grassmannian $$G_{1,4,2}$$ of lines of PG (4, 2) = $$\mathbb{P}V\left( {5,2} \right)$$ are those points $$x \in {\text{PG}}\left( {{\text{9,2}}} \right) = \mathbb{P}\left( { \wedge {}^2V\left( {5,2} \right)} \right)$$ which satisfy a certain quintic equation Q(x) = 0. (The quintic polynomial Q is given explicitly in Shaw and Gordon [3].) A projective flat X$$ \subset $$ PG (9, 2) will be termed odd or even according as X intersects $$G_{1,4,2}$$ in an odd or even number of points. Let $$Q^\ddag \left( {x_1 ,...,x_5 } \right)$$ denote the alternating quinquelinear form obtained by completely polarizing Q. We define the associate Y = X# of a r-flat X$$ \subset $$ PG (9, 2) by $$Y = \left\{ {y \in {\text{PG}}\left( {n{\text{,2}}} \right)\left| {Q^\ddag \left( {x_1 ,x_{2,} ,x_3 ,x_4 ,y} \right)} \right. = 0,\quad {\text{for}}\;{\text{all}}\,x_1 ,x_{2,} ,x_3 ,x_4 \in X} \right\}.$$. Because $$Q^\ddag$$ is quinquelinear, the associate X# of an r-flat X is an s-flat for some s. The cases where r = 4 are of particular interest: if X is an odd 4-flat then X$$ \subseteq$$X# while if X is an even 4-flat then X# is necessarily also a 4-flat which is moreover disjoint from X. We give an example of an odd 4-flat X which is self-associate: X# = X. An example of an even 4-flat X such that $$\left( {X^\# } \right)^\$$# = X is provided by any 4-flat X which is external to $$G_{1,4,2}$$. However, it appears that the two possibilities just illustrated, namely X# = X for an odd 4-flat and $$\left( {X^\# } \right)^\$$# = X for an even 4-flat, are the exception rather than the rule. Indeed, we provide examples of odd 4-flats for which X# = PG (9, 2) and of even 4-flats for which $${X^{\# \# \# } }$$ = X.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gordon, N. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Designs, codes and cryptography</subfield><subfield code="d">Kluwer Academic Publishers, 1991</subfield><subfield code="g">32(2004), 1-3 vom: Mai, Seite 381-396</subfield><subfield code="w">(DE-627)130994197</subfield><subfield code="w">(DE-600)1082042-5</subfield><subfield code="w">(DE-576)029154375</subfield><subfield code="x">0925-1022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2004</subfield><subfield code="g">number:1-3</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:381-396</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/B:DESI.0000029236.10701.61</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2004</subfield><subfield code="e">1-3</subfield><subfield code="c">05</subfield><subfield code="h">381-396</subfield></datafield></record></collection>
|
score |
7.399579 |