Slim Near Polygons
Abstract In this paper we initiate the study of hybrid slim near hexagons. These are near hexagons which are not dense and not a generalized hexagon in which each line is incident with exactly three points. In the present paper, we will emphasize slim near hexagons with at least one W(2)-quad or Q(5...
Ausführliche Beschreibung
Autor*in: |
Bruyn, Bart De [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2005 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, Inc. 2005 |
---|
Übergeordnetes Werk: |
Enthalten in: Designs, codes and cryptography - Kluwer Academic Publishers, 1991, 37(2005), 2 vom: Nov., Seite 263-280 |
---|---|
Übergeordnetes Werk: |
volume:37 ; year:2005 ; number:2 ; month:11 ; pages:263-280 |
Links: |
---|
DOI / URN: |
10.1007/s10623-004-3990-4 |
---|
Katalog-ID: |
OLC2027285806 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2027285806 | ||
003 | DE-627 | ||
005 | 20230503040254.0 | ||
007 | tu | ||
008 | 200819s2005 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10623-004-3990-4 |2 doi | |
035 | |a (DE-627)OLC2027285806 | ||
035 | |a (DE-He213)s10623-004-3990-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Bruyn, Bart De |e verfasserin |4 aut | |
245 | 1 | 0 | |a Slim Near Polygons |
264 | 1 | |c 2005 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, Inc. 2005 | ||
520 | |a Abstract In this paper we initiate the study of hybrid slim near hexagons. These are near hexagons which are not dense and not a generalized hexagon in which each line is incident with exactly three points. In the present paper, we will emphasize slim near hexagons with at least one W(2)-quad or Q(5, 2)-quad. Such near hexagons are finite if there are no special points, i.e. points which lie at distance at most 2 from any other point. We will determine upper bounds for the number of lines through a fixed point. We will also look at the special case where the near hexagon has an order. We will determine all slim near hexagons with an order which contain at least one (necessarily big) Q(5,2)-quad, or at least one big W(2)-quad. | ||
650 | 4 | |a near hexagons | |
650 | 4 | |a generalized quadrangle | |
773 | 0 | 8 | |i Enthalten in |t Designs, codes and cryptography |d Kluwer Academic Publishers, 1991 |g 37(2005), 2 vom: Nov., Seite 263-280 |w (DE-627)130994197 |w (DE-600)1082042-5 |w (DE-576)029154375 |x 0925-1022 |7 nnns |
773 | 1 | 8 | |g volume:37 |g year:2005 |g number:2 |g month:11 |g pages:263-280 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10623-004-3990-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4126 | ||
951 | |a AR | ||
952 | |d 37 |j 2005 |e 2 |c 11 |h 263-280 |
author_variant |
b d b bd bdb |
---|---|
matchkey_str |
article:09251022:2005----::lmeroy |
hierarchy_sort_str |
2005 |
publishDate |
2005 |
allfields |
10.1007/s10623-004-3990-4 doi (DE-627)OLC2027285806 (DE-He213)s10623-004-3990-4-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Bruyn, Bart De verfasserin aut Slim Near Polygons 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2005 Abstract In this paper we initiate the study of hybrid slim near hexagons. These are near hexagons which are not dense and not a generalized hexagon in which each line is incident with exactly three points. In the present paper, we will emphasize slim near hexagons with at least one W(2)-quad or Q(5, 2)-quad. Such near hexagons are finite if there are no special points, i.e. points which lie at distance at most 2 from any other point. We will determine upper bounds for the number of lines through a fixed point. We will also look at the special case where the near hexagon has an order. We will determine all slim near hexagons with an order which contain at least one (necessarily big) Q(5,2)-quad, or at least one big W(2)-quad. near hexagons generalized quadrangle Enthalten in Designs, codes and cryptography Kluwer Academic Publishers, 1991 37(2005), 2 vom: Nov., Seite 263-280 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:37 year:2005 number:2 month:11 pages:263-280 https://doi.org/10.1007/s10623-004-3990-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4126 AR 37 2005 2 11 263-280 |
spelling |
10.1007/s10623-004-3990-4 doi (DE-627)OLC2027285806 (DE-He213)s10623-004-3990-4-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Bruyn, Bart De verfasserin aut Slim Near Polygons 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2005 Abstract In this paper we initiate the study of hybrid slim near hexagons. These are near hexagons which are not dense and not a generalized hexagon in which each line is incident with exactly three points. In the present paper, we will emphasize slim near hexagons with at least one W(2)-quad or Q(5, 2)-quad. Such near hexagons are finite if there are no special points, i.e. points which lie at distance at most 2 from any other point. We will determine upper bounds for the number of lines through a fixed point. We will also look at the special case where the near hexagon has an order. We will determine all slim near hexagons with an order which contain at least one (necessarily big) Q(5,2)-quad, or at least one big W(2)-quad. near hexagons generalized quadrangle Enthalten in Designs, codes and cryptography Kluwer Academic Publishers, 1991 37(2005), 2 vom: Nov., Seite 263-280 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:37 year:2005 number:2 month:11 pages:263-280 https://doi.org/10.1007/s10623-004-3990-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4126 AR 37 2005 2 11 263-280 |
allfields_unstemmed |
10.1007/s10623-004-3990-4 doi (DE-627)OLC2027285806 (DE-He213)s10623-004-3990-4-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Bruyn, Bart De verfasserin aut Slim Near Polygons 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2005 Abstract In this paper we initiate the study of hybrid slim near hexagons. These are near hexagons which are not dense and not a generalized hexagon in which each line is incident with exactly three points. In the present paper, we will emphasize slim near hexagons with at least one W(2)-quad or Q(5, 2)-quad. Such near hexagons are finite if there are no special points, i.e. points which lie at distance at most 2 from any other point. We will determine upper bounds for the number of lines through a fixed point. We will also look at the special case where the near hexagon has an order. We will determine all slim near hexagons with an order which contain at least one (necessarily big) Q(5,2)-quad, or at least one big W(2)-quad. near hexagons generalized quadrangle Enthalten in Designs, codes and cryptography Kluwer Academic Publishers, 1991 37(2005), 2 vom: Nov., Seite 263-280 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:37 year:2005 number:2 month:11 pages:263-280 https://doi.org/10.1007/s10623-004-3990-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4126 AR 37 2005 2 11 263-280 |
allfieldsGer |
10.1007/s10623-004-3990-4 doi (DE-627)OLC2027285806 (DE-He213)s10623-004-3990-4-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Bruyn, Bart De verfasserin aut Slim Near Polygons 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2005 Abstract In this paper we initiate the study of hybrid slim near hexagons. These are near hexagons which are not dense and not a generalized hexagon in which each line is incident with exactly three points. In the present paper, we will emphasize slim near hexagons with at least one W(2)-quad or Q(5, 2)-quad. Such near hexagons are finite if there are no special points, i.e. points which lie at distance at most 2 from any other point. We will determine upper bounds for the number of lines through a fixed point. We will also look at the special case where the near hexagon has an order. We will determine all slim near hexagons with an order which contain at least one (necessarily big) Q(5,2)-quad, or at least one big W(2)-quad. near hexagons generalized quadrangle Enthalten in Designs, codes and cryptography Kluwer Academic Publishers, 1991 37(2005), 2 vom: Nov., Seite 263-280 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:37 year:2005 number:2 month:11 pages:263-280 https://doi.org/10.1007/s10623-004-3990-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4126 AR 37 2005 2 11 263-280 |
allfieldsSound |
10.1007/s10623-004-3990-4 doi (DE-627)OLC2027285806 (DE-He213)s10623-004-3990-4-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Bruyn, Bart De verfasserin aut Slim Near Polygons 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2005 Abstract In this paper we initiate the study of hybrid slim near hexagons. These are near hexagons which are not dense and not a generalized hexagon in which each line is incident with exactly three points. In the present paper, we will emphasize slim near hexagons with at least one W(2)-quad or Q(5, 2)-quad. Such near hexagons are finite if there are no special points, i.e. points which lie at distance at most 2 from any other point. We will determine upper bounds for the number of lines through a fixed point. We will also look at the special case where the near hexagon has an order. We will determine all slim near hexagons with an order which contain at least one (necessarily big) Q(5,2)-quad, or at least one big W(2)-quad. near hexagons generalized quadrangle Enthalten in Designs, codes and cryptography Kluwer Academic Publishers, 1991 37(2005), 2 vom: Nov., Seite 263-280 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:37 year:2005 number:2 month:11 pages:263-280 https://doi.org/10.1007/s10623-004-3990-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4126 AR 37 2005 2 11 263-280 |
language |
English |
source |
Enthalten in Designs, codes and cryptography 37(2005), 2 vom: Nov., Seite 263-280 volume:37 year:2005 number:2 month:11 pages:263-280 |
sourceStr |
Enthalten in Designs, codes and cryptography 37(2005), 2 vom: Nov., Seite 263-280 volume:37 year:2005 number:2 month:11 pages:263-280 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
near hexagons generalized quadrangle |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Designs, codes and cryptography |
authorswithroles_txt_mv |
Bruyn, Bart De @@aut@@ |
publishDateDaySort_date |
2005-11-01T00:00:00Z |
hierarchy_top_id |
130994197 |
dewey-sort |
14 |
id |
OLC2027285806 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2027285806</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503040254.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10623-004-3990-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2027285806</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10623-004-3990-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bruyn, Bart De</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Slim Near Polygons</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, Inc. 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper we initiate the study of hybrid slim near hexagons. These are near hexagons which are not dense and not a generalized hexagon in which each line is incident with exactly three points. In the present paper, we will emphasize slim near hexagons with at least one W(2)-quad or Q(5, 2)-quad. Such near hexagons are finite if there are no special points, i.e. points which lie at distance at most 2 from any other point. We will determine upper bounds for the number of lines through a fixed point. We will also look at the special case where the near hexagon has an order. We will determine all slim near hexagons with an order which contain at least one (necessarily big) Q(5,2)-quad, or at least one big W(2)-quad.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">near hexagons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generalized quadrangle</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Designs, codes and cryptography</subfield><subfield code="d">Kluwer Academic Publishers, 1991</subfield><subfield code="g">37(2005), 2 vom: Nov., Seite 263-280</subfield><subfield code="w">(DE-627)130994197</subfield><subfield code="w">(DE-600)1082042-5</subfield><subfield code="w">(DE-576)029154375</subfield><subfield code="x">0925-1022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:2</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:263-280</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10623-004-3990-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2005</subfield><subfield code="e">2</subfield><subfield code="c">11</subfield><subfield code="h">263-280</subfield></datafield></record></collection>
|
author |
Bruyn, Bart De |
spellingShingle |
Bruyn, Bart De ddc 004 ssgn 17,1 misc near hexagons misc generalized quadrangle Slim Near Polygons |
authorStr |
Bruyn, Bart De |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130994197 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0925-1022 |
topic_title |
004 VZ 17,1 ssgn Slim Near Polygons near hexagons generalized quadrangle |
topic |
ddc 004 ssgn 17,1 misc near hexagons misc generalized quadrangle |
topic_unstemmed |
ddc 004 ssgn 17,1 misc near hexagons misc generalized quadrangle |
topic_browse |
ddc 004 ssgn 17,1 misc near hexagons misc generalized quadrangle |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Designs, codes and cryptography |
hierarchy_parent_id |
130994197 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Designs, codes and cryptography |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 |
title |
Slim Near Polygons |
ctrlnum |
(DE-627)OLC2027285806 (DE-He213)s10623-004-3990-4-p |
title_full |
Slim Near Polygons |
author_sort |
Bruyn, Bart De |
journal |
Designs, codes and cryptography |
journalStr |
Designs, codes and cryptography |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2005 |
contenttype_str_mv |
txt |
container_start_page |
263 |
author_browse |
Bruyn, Bart De |
container_volume |
37 |
class |
004 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Bruyn, Bart De |
doi_str_mv |
10.1007/s10623-004-3990-4 |
dewey-full |
004 |
title_sort |
slim near polygons |
title_auth |
Slim Near Polygons |
abstract |
Abstract In this paper we initiate the study of hybrid slim near hexagons. These are near hexagons which are not dense and not a generalized hexagon in which each line is incident with exactly three points. In the present paper, we will emphasize slim near hexagons with at least one W(2)-quad or Q(5, 2)-quad. Such near hexagons are finite if there are no special points, i.e. points which lie at distance at most 2 from any other point. We will determine upper bounds for the number of lines through a fixed point. We will also look at the special case where the near hexagon has an order. We will determine all slim near hexagons with an order which contain at least one (necessarily big) Q(5,2)-quad, or at least one big W(2)-quad. © Springer Science+Business Media, Inc. 2005 |
abstractGer |
Abstract In this paper we initiate the study of hybrid slim near hexagons. These are near hexagons which are not dense and not a generalized hexagon in which each line is incident with exactly three points. In the present paper, we will emphasize slim near hexagons with at least one W(2)-quad or Q(5, 2)-quad. Such near hexagons are finite if there are no special points, i.e. points which lie at distance at most 2 from any other point. We will determine upper bounds for the number of lines through a fixed point. We will also look at the special case where the near hexagon has an order. We will determine all slim near hexagons with an order which contain at least one (necessarily big) Q(5,2)-quad, or at least one big W(2)-quad. © Springer Science+Business Media, Inc. 2005 |
abstract_unstemmed |
Abstract In this paper we initiate the study of hybrid slim near hexagons. These are near hexagons which are not dense and not a generalized hexagon in which each line is incident with exactly three points. In the present paper, we will emphasize slim near hexagons with at least one W(2)-quad or Q(5, 2)-quad. Such near hexagons are finite if there are no special points, i.e. points which lie at distance at most 2 from any other point. We will determine upper bounds for the number of lines through a fixed point. We will also look at the special case where the near hexagon has an order. We will determine all slim near hexagons with an order which contain at least one (necessarily big) Q(5,2)-quad, or at least one big W(2)-quad. © Springer Science+Business Media, Inc. 2005 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_40 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4126 |
container_issue |
2 |
title_short |
Slim Near Polygons |
url |
https://doi.org/10.1007/s10623-004-3990-4 |
remote_bool |
false |
ppnlink |
130994197 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10623-004-3990-4 |
up_date |
2024-07-03T14:45:24.088Z |
_version_ |
1803569514772692992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2027285806</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503040254.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10623-004-3990-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2027285806</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10623-004-3990-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bruyn, Bart De</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Slim Near Polygons</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, Inc. 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper we initiate the study of hybrid slim near hexagons. These are near hexagons which are not dense and not a generalized hexagon in which each line is incident with exactly three points. In the present paper, we will emphasize slim near hexagons with at least one W(2)-quad or Q(5, 2)-quad. Such near hexagons are finite if there are no special points, i.e. points which lie at distance at most 2 from any other point. We will determine upper bounds for the number of lines through a fixed point. We will also look at the special case where the near hexagon has an order. We will determine all slim near hexagons with an order which contain at least one (necessarily big) Q(5,2)-quad, or at least one big W(2)-quad.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">near hexagons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generalized quadrangle</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Designs, codes and cryptography</subfield><subfield code="d">Kluwer Academic Publishers, 1991</subfield><subfield code="g">37(2005), 2 vom: Nov., Seite 263-280</subfield><subfield code="w">(DE-627)130994197</subfield><subfield code="w">(DE-600)1082042-5</subfield><subfield code="w">(DE-576)029154375</subfield><subfield code="x">0925-1022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:2</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:263-280</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10623-004-3990-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2005</subfield><subfield code="e">2</subfield><subfield code="c">11</subfield><subfield code="h">263-280</subfield></datafield></record></collection>
|
score |
7.401478 |