Speeding up elliptic curve discrete logarithm computations with point halving
Abstract Pollard rho method and its parallelized variants are at present known as the best generic algorithms for computing elliptic curve discrete logarithms. We propose new iteration function for the rho method by exploiting the fact that point halving is more efficient than point addition for ell...
Ausführliche Beschreibung
Autor*in: |
Zhang, Fangguo [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Designs, codes and cryptography - Springer US, 1991, 67(2011), 2 vom: 21. Dez., Seite 197-208 |
---|---|
Übergeordnetes Werk: |
volume:67 ; year:2011 ; number:2 ; day:21 ; month:12 ; pages:197-208 |
Links: |
---|
DOI / URN: |
10.1007/s10623-011-9599-5 |
---|
Katalog-ID: |
OLC2027293078 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2027293078 | ||
003 | DE-627 | ||
005 | 20230503040804.0 | ||
007 | tu | ||
008 | 200819s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10623-011-9599-5 |2 doi | |
035 | |a (DE-627)OLC2027293078 | ||
035 | |a (DE-He213)s10623-011-9599-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Zhang, Fangguo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Speeding up elliptic curve discrete logarithm computations with point halving |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2011 | ||
520 | |a Abstract Pollard rho method and its parallelized variants are at present known as the best generic algorithms for computing elliptic curve discrete logarithms. We propose new iteration function for the rho method by exploiting the fact that point halving is more efficient than point addition for elliptic curves over binary fields. We present a careful analysis of the alternative rho method with new iteration function. Compared to the previous r-adding walk, generally the new method can achieve a significant speedup for computing elliptic curve discrete logarithms over binary fields. For instance, for certain NIST-recommended curves over binary fields, the new method is about 12–17% faster than the previous best methods. | ||
650 | 4 | |a Pollard rho method | |
650 | 4 | |a Elliptic curve discrete logarithm | |
650 | 4 | |a Point halving | |
650 | 4 | |a Random walk | |
700 | 1 | |a Wang, Ping |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Designs, codes and cryptography |d Springer US, 1991 |g 67(2011), 2 vom: 21. Dez., Seite 197-208 |w (DE-627)130994197 |w (DE-600)1082042-5 |w (DE-576)029154375 |x 0925-1022 |7 nnns |
773 | 1 | 8 | |g volume:67 |g year:2011 |g number:2 |g day:21 |g month:12 |g pages:197-208 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10623-011-9599-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4126 | ||
951 | |a AR | ||
952 | |d 67 |j 2011 |e 2 |b 21 |c 12 |h 197-208 |
author_variant |
f z fz p w pw |
---|---|
matchkey_str |
article:09251022:2011----::peigplitcuvdsrtlgrtmoptto |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s10623-011-9599-5 doi (DE-627)OLC2027293078 (DE-He213)s10623-011-9599-5-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Zhang, Fangguo verfasserin aut Speeding up elliptic curve discrete logarithm computations with point halving 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Pollard rho method and its parallelized variants are at present known as the best generic algorithms for computing elliptic curve discrete logarithms. We propose new iteration function for the rho method by exploiting the fact that point halving is more efficient than point addition for elliptic curves over binary fields. We present a careful analysis of the alternative rho method with new iteration function. Compared to the previous r-adding walk, generally the new method can achieve a significant speedup for computing elliptic curve discrete logarithms over binary fields. For instance, for certain NIST-recommended curves over binary fields, the new method is about 12–17% faster than the previous best methods. Pollard rho method Elliptic curve discrete logarithm Point halving Random walk Wang, Ping aut Enthalten in Designs, codes and cryptography Springer US, 1991 67(2011), 2 vom: 21. Dez., Seite 197-208 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:67 year:2011 number:2 day:21 month:12 pages:197-208 https://doi.org/10.1007/s10623-011-9599-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4126 AR 67 2011 2 21 12 197-208 |
spelling |
10.1007/s10623-011-9599-5 doi (DE-627)OLC2027293078 (DE-He213)s10623-011-9599-5-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Zhang, Fangguo verfasserin aut Speeding up elliptic curve discrete logarithm computations with point halving 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Pollard rho method and its parallelized variants are at present known as the best generic algorithms for computing elliptic curve discrete logarithms. We propose new iteration function for the rho method by exploiting the fact that point halving is more efficient than point addition for elliptic curves over binary fields. We present a careful analysis of the alternative rho method with new iteration function. Compared to the previous r-adding walk, generally the new method can achieve a significant speedup for computing elliptic curve discrete logarithms over binary fields. For instance, for certain NIST-recommended curves over binary fields, the new method is about 12–17% faster than the previous best methods. Pollard rho method Elliptic curve discrete logarithm Point halving Random walk Wang, Ping aut Enthalten in Designs, codes and cryptography Springer US, 1991 67(2011), 2 vom: 21. Dez., Seite 197-208 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:67 year:2011 number:2 day:21 month:12 pages:197-208 https://doi.org/10.1007/s10623-011-9599-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4126 AR 67 2011 2 21 12 197-208 |
allfields_unstemmed |
10.1007/s10623-011-9599-5 doi (DE-627)OLC2027293078 (DE-He213)s10623-011-9599-5-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Zhang, Fangguo verfasserin aut Speeding up elliptic curve discrete logarithm computations with point halving 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Pollard rho method and its parallelized variants are at present known as the best generic algorithms for computing elliptic curve discrete logarithms. We propose new iteration function for the rho method by exploiting the fact that point halving is more efficient than point addition for elliptic curves over binary fields. We present a careful analysis of the alternative rho method with new iteration function. Compared to the previous r-adding walk, generally the new method can achieve a significant speedup for computing elliptic curve discrete logarithms over binary fields. For instance, for certain NIST-recommended curves over binary fields, the new method is about 12–17% faster than the previous best methods. Pollard rho method Elliptic curve discrete logarithm Point halving Random walk Wang, Ping aut Enthalten in Designs, codes and cryptography Springer US, 1991 67(2011), 2 vom: 21. Dez., Seite 197-208 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:67 year:2011 number:2 day:21 month:12 pages:197-208 https://doi.org/10.1007/s10623-011-9599-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4126 AR 67 2011 2 21 12 197-208 |
allfieldsGer |
10.1007/s10623-011-9599-5 doi (DE-627)OLC2027293078 (DE-He213)s10623-011-9599-5-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Zhang, Fangguo verfasserin aut Speeding up elliptic curve discrete logarithm computations with point halving 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Pollard rho method and its parallelized variants are at present known as the best generic algorithms for computing elliptic curve discrete logarithms. We propose new iteration function for the rho method by exploiting the fact that point halving is more efficient than point addition for elliptic curves over binary fields. We present a careful analysis of the alternative rho method with new iteration function. Compared to the previous r-adding walk, generally the new method can achieve a significant speedup for computing elliptic curve discrete logarithms over binary fields. For instance, for certain NIST-recommended curves over binary fields, the new method is about 12–17% faster than the previous best methods. Pollard rho method Elliptic curve discrete logarithm Point halving Random walk Wang, Ping aut Enthalten in Designs, codes and cryptography Springer US, 1991 67(2011), 2 vom: 21. Dez., Seite 197-208 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:67 year:2011 number:2 day:21 month:12 pages:197-208 https://doi.org/10.1007/s10623-011-9599-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4126 AR 67 2011 2 21 12 197-208 |
allfieldsSound |
10.1007/s10623-011-9599-5 doi (DE-627)OLC2027293078 (DE-He213)s10623-011-9599-5-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Zhang, Fangguo verfasserin aut Speeding up elliptic curve discrete logarithm computations with point halving 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract Pollard rho method and its parallelized variants are at present known as the best generic algorithms for computing elliptic curve discrete logarithms. We propose new iteration function for the rho method by exploiting the fact that point halving is more efficient than point addition for elliptic curves over binary fields. We present a careful analysis of the alternative rho method with new iteration function. Compared to the previous r-adding walk, generally the new method can achieve a significant speedup for computing elliptic curve discrete logarithms over binary fields. For instance, for certain NIST-recommended curves over binary fields, the new method is about 12–17% faster than the previous best methods. Pollard rho method Elliptic curve discrete logarithm Point halving Random walk Wang, Ping aut Enthalten in Designs, codes and cryptography Springer US, 1991 67(2011), 2 vom: 21. Dez., Seite 197-208 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:67 year:2011 number:2 day:21 month:12 pages:197-208 https://doi.org/10.1007/s10623-011-9599-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4126 AR 67 2011 2 21 12 197-208 |
language |
English |
source |
Enthalten in Designs, codes and cryptography 67(2011), 2 vom: 21. Dez., Seite 197-208 volume:67 year:2011 number:2 day:21 month:12 pages:197-208 |
sourceStr |
Enthalten in Designs, codes and cryptography 67(2011), 2 vom: 21. Dez., Seite 197-208 volume:67 year:2011 number:2 day:21 month:12 pages:197-208 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Pollard rho method Elliptic curve discrete logarithm Point halving Random walk |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Designs, codes and cryptography |
authorswithroles_txt_mv |
Zhang, Fangguo @@aut@@ Wang, Ping @@aut@@ |
publishDateDaySort_date |
2011-12-21T00:00:00Z |
hierarchy_top_id |
130994197 |
dewey-sort |
14 |
id |
OLC2027293078 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2027293078</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503040804.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10623-011-9599-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2027293078</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10623-011-9599-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Fangguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Speeding up elliptic curve discrete logarithm computations with point halving</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Pollard rho method and its parallelized variants are at present known as the best generic algorithms for computing elliptic curve discrete logarithms. We propose new iteration function for the rho method by exploiting the fact that point halving is more efficient than point addition for elliptic curves over binary fields. We present a careful analysis of the alternative rho method with new iteration function. Compared to the previous r-adding walk, generally the new method can achieve a significant speedup for computing elliptic curve discrete logarithms over binary fields. For instance, for certain NIST-recommended curves over binary fields, the new method is about 12–17% faster than the previous best methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pollard rho method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elliptic curve discrete logarithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Point halving</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random walk</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Ping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Designs, codes and cryptography</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">67(2011), 2 vom: 21. Dez., Seite 197-208</subfield><subfield code="w">(DE-627)130994197</subfield><subfield code="w">(DE-600)1082042-5</subfield><subfield code="w">(DE-576)029154375</subfield><subfield code="x">0925-1022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:2</subfield><subfield code="g">day:21</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:197-208</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10623-011-9599-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield><subfield code="j">2011</subfield><subfield code="e">2</subfield><subfield code="b">21</subfield><subfield code="c">12</subfield><subfield code="h">197-208</subfield></datafield></record></collection>
|
author |
Zhang, Fangguo |
spellingShingle |
Zhang, Fangguo ddc 004 ssgn 17,1 misc Pollard rho method misc Elliptic curve discrete logarithm misc Point halving misc Random walk Speeding up elliptic curve discrete logarithm computations with point halving |
authorStr |
Zhang, Fangguo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130994197 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0925-1022 |
topic_title |
004 VZ 17,1 ssgn Speeding up elliptic curve discrete logarithm computations with point halving Pollard rho method Elliptic curve discrete logarithm Point halving Random walk |
topic |
ddc 004 ssgn 17,1 misc Pollard rho method misc Elliptic curve discrete logarithm misc Point halving misc Random walk |
topic_unstemmed |
ddc 004 ssgn 17,1 misc Pollard rho method misc Elliptic curve discrete logarithm misc Point halving misc Random walk |
topic_browse |
ddc 004 ssgn 17,1 misc Pollard rho method misc Elliptic curve discrete logarithm misc Point halving misc Random walk |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Designs, codes and cryptography |
hierarchy_parent_id |
130994197 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Designs, codes and cryptography |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 |
title |
Speeding up elliptic curve discrete logarithm computations with point halving |
ctrlnum |
(DE-627)OLC2027293078 (DE-He213)s10623-011-9599-5-p |
title_full |
Speeding up elliptic curve discrete logarithm computations with point halving |
author_sort |
Zhang, Fangguo |
journal |
Designs, codes and cryptography |
journalStr |
Designs, codes and cryptography |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
197 |
author_browse |
Zhang, Fangguo Wang, Ping |
container_volume |
67 |
class |
004 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Zhang, Fangguo |
doi_str_mv |
10.1007/s10623-011-9599-5 |
dewey-full |
004 |
title_sort |
speeding up elliptic curve discrete logarithm computations with point halving |
title_auth |
Speeding up elliptic curve discrete logarithm computations with point halving |
abstract |
Abstract Pollard rho method and its parallelized variants are at present known as the best generic algorithms for computing elliptic curve discrete logarithms. We propose new iteration function for the rho method by exploiting the fact that point halving is more efficient than point addition for elliptic curves over binary fields. We present a careful analysis of the alternative rho method with new iteration function. Compared to the previous r-adding walk, generally the new method can achieve a significant speedup for computing elliptic curve discrete logarithms over binary fields. For instance, for certain NIST-recommended curves over binary fields, the new method is about 12–17% faster than the previous best methods. © Springer Science+Business Media, LLC 2011 |
abstractGer |
Abstract Pollard rho method and its parallelized variants are at present known as the best generic algorithms for computing elliptic curve discrete logarithms. We propose new iteration function for the rho method by exploiting the fact that point halving is more efficient than point addition for elliptic curves over binary fields. We present a careful analysis of the alternative rho method with new iteration function. Compared to the previous r-adding walk, generally the new method can achieve a significant speedup for computing elliptic curve discrete logarithms over binary fields. For instance, for certain NIST-recommended curves over binary fields, the new method is about 12–17% faster than the previous best methods. © Springer Science+Business Media, LLC 2011 |
abstract_unstemmed |
Abstract Pollard rho method and its parallelized variants are at present known as the best generic algorithms for computing elliptic curve discrete logarithms. We propose new iteration function for the rho method by exploiting the fact that point halving is more efficient than point addition for elliptic curves over binary fields. We present a careful analysis of the alternative rho method with new iteration function. Compared to the previous r-adding walk, generally the new method can achieve a significant speedup for computing elliptic curve discrete logarithms over binary fields. For instance, for certain NIST-recommended curves over binary fields, the new method is about 12–17% faster than the previous best methods. © Springer Science+Business Media, LLC 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4126 |
container_issue |
2 |
title_short |
Speeding up elliptic curve discrete logarithm computations with point halving |
url |
https://doi.org/10.1007/s10623-011-9599-5 |
remote_bool |
false |
author2 |
Wang, Ping |
author2Str |
Wang, Ping |
ppnlink |
130994197 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10623-011-9599-5 |
up_date |
2024-07-03T14:47:02.235Z |
_version_ |
1803569617680990208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2027293078</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503040804.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10623-011-9599-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2027293078</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10623-011-9599-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Fangguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Speeding up elliptic curve discrete logarithm computations with point halving</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Pollard rho method and its parallelized variants are at present known as the best generic algorithms for computing elliptic curve discrete logarithms. We propose new iteration function for the rho method by exploiting the fact that point halving is more efficient than point addition for elliptic curves over binary fields. We present a careful analysis of the alternative rho method with new iteration function. Compared to the previous r-adding walk, generally the new method can achieve a significant speedup for computing elliptic curve discrete logarithms over binary fields. For instance, for certain NIST-recommended curves over binary fields, the new method is about 12–17% faster than the previous best methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pollard rho method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elliptic curve discrete logarithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Point halving</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random walk</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Ping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Designs, codes and cryptography</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">67(2011), 2 vom: 21. Dez., Seite 197-208</subfield><subfield code="w">(DE-627)130994197</subfield><subfield code="w">(DE-600)1082042-5</subfield><subfield code="w">(DE-576)029154375</subfield><subfield code="x">0925-1022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:2</subfield><subfield code="g">day:21</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:197-208</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10623-011-9599-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield><subfield code="j">2011</subfield><subfield code="e">2</subfield><subfield code="b">21</subfield><subfield code="c">12</subfield><subfield code="h">197-208</subfield></datafield></record></collection>
|
score |
7.400943 |