Characterization of the automorphism group of quaternary linear Hadamard codes
Abstract A quaternary linear Hadamard code $${\mathcal{C}}$$ is a code over $${\mathbb{Z}_4}$$ such that, under the Gray map, gives a binary Hadamard code. The permutation automorphism group of a quaternary linear code $${\mathcal{C}}$$ of length n is defined as $${{\rm PAut}(\mathcal{C}) = \{\sigma...
Ausführliche Beschreibung
Autor*in: |
Pernas, Jaume [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Designs, codes and cryptography - Springer US, 1991, 70(2012), 1-2 vom: 25. Mai, Seite 105-115 |
---|---|
Übergeordnetes Werk: |
volume:70 ; year:2012 ; number:1-2 ; day:25 ; month:05 ; pages:105-115 |
Links: |
---|
DOI / URN: |
10.1007/s10623-012-9678-2 |
---|
Katalog-ID: |
OLC2027293833 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2027293833 | ||
003 | DE-627 | ||
005 | 20230503040809.0 | ||
007 | tu | ||
008 | 200819s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10623-012-9678-2 |2 doi | |
035 | |a (DE-627)OLC2027293833 | ||
035 | |a (DE-He213)s10623-012-9678-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Pernas, Jaume |e verfasserin |4 aut | |
245 | 1 | 0 | |a Characterization of the automorphism group of quaternary linear Hadamard codes |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2012 | ||
520 | |a Abstract A quaternary linear Hadamard code $${\mathcal{C}}$$ is a code over $${\mathbb{Z}_4}$$ such that, under the Gray map, gives a binary Hadamard code. The permutation automorphism group of a quaternary linear code $${\mathcal{C}}$$ of length n is defined as $${{\rm PAut}(\mathcal{C}) = \{\sigma \in S_{n} : \sigma(\mathcal{C}) = \mathcal{C}\}}$$. In this paper, the order of the permutation automorphism group of a family of quaternary linear Hadamard codes is established. Moreover, these groups are completely characterized by computing the orbits of the action of $${{\rm PAut}(\mathcal{C})}$$ on $${\mathcal{C}}$$ and by giving the generators of the group. Since the dual of a Hadamard code is an extended 1-perfect code in the quaternary sense, the permutation automorphism group of these codes is also computed. | ||
650 | 4 | |a Quaternary linear codes | |
650 | 4 | |a Hadamard codes | |
650 | 4 | |a 1-Perfect codes | |
650 | 4 | |a Permutation automorphism group | |
700 | 1 | |a Pujol, Jaume |4 aut | |
700 | 1 | |a Villanueva, Mercè |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Designs, codes and cryptography |d Springer US, 1991 |g 70(2012), 1-2 vom: 25. Mai, Seite 105-115 |w (DE-627)130994197 |w (DE-600)1082042-5 |w (DE-576)029154375 |x 0925-1022 |7 nnns |
773 | 1 | 8 | |g volume:70 |g year:2012 |g number:1-2 |g day:25 |g month:05 |g pages:105-115 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10623-012-9678-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4126 | ||
951 | |a AR | ||
952 | |d 70 |j 2012 |e 1-2 |b 25 |c 05 |h 105-115 |
author_variant |
j p jp j p jp m v mv |
---|---|
matchkey_str |
article:09251022:2012----::hrceiainfhatmrhsgopfutray |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1007/s10623-012-9678-2 doi (DE-627)OLC2027293833 (DE-He213)s10623-012-9678-2-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Pernas, Jaume verfasserin aut Characterization of the automorphism group of quaternary linear Hadamard codes 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2012 Abstract A quaternary linear Hadamard code $${\mathcal{C}}$$ is a code over $${\mathbb{Z}_4}$$ such that, under the Gray map, gives a binary Hadamard code. The permutation automorphism group of a quaternary linear code $${\mathcal{C}}$$ of length n is defined as $${{\rm PAut}(\mathcal{C}) = \{\sigma \in S_{n} : \sigma(\mathcal{C}) = \mathcal{C}\}}$$. In this paper, the order of the permutation automorphism group of a family of quaternary linear Hadamard codes is established. Moreover, these groups are completely characterized by computing the orbits of the action of $${{\rm PAut}(\mathcal{C})}$$ on $${\mathcal{C}}$$ and by giving the generators of the group. Since the dual of a Hadamard code is an extended 1-perfect code in the quaternary sense, the permutation automorphism group of these codes is also computed. Quaternary linear codes Hadamard codes 1-Perfect codes Permutation automorphism group Pujol, Jaume aut Villanueva, Mercè aut Enthalten in Designs, codes and cryptography Springer US, 1991 70(2012), 1-2 vom: 25. Mai, Seite 105-115 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:70 year:2012 number:1-2 day:25 month:05 pages:105-115 https://doi.org/10.1007/s10623-012-9678-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4126 AR 70 2012 1-2 25 05 105-115 |
spelling |
10.1007/s10623-012-9678-2 doi (DE-627)OLC2027293833 (DE-He213)s10623-012-9678-2-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Pernas, Jaume verfasserin aut Characterization of the automorphism group of quaternary linear Hadamard codes 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2012 Abstract A quaternary linear Hadamard code $${\mathcal{C}}$$ is a code over $${\mathbb{Z}_4}$$ such that, under the Gray map, gives a binary Hadamard code. The permutation automorphism group of a quaternary linear code $${\mathcal{C}}$$ of length n is defined as $${{\rm PAut}(\mathcal{C}) = \{\sigma \in S_{n} : \sigma(\mathcal{C}) = \mathcal{C}\}}$$. In this paper, the order of the permutation automorphism group of a family of quaternary linear Hadamard codes is established. Moreover, these groups are completely characterized by computing the orbits of the action of $${{\rm PAut}(\mathcal{C})}$$ on $${\mathcal{C}}$$ and by giving the generators of the group. Since the dual of a Hadamard code is an extended 1-perfect code in the quaternary sense, the permutation automorphism group of these codes is also computed. Quaternary linear codes Hadamard codes 1-Perfect codes Permutation automorphism group Pujol, Jaume aut Villanueva, Mercè aut Enthalten in Designs, codes and cryptography Springer US, 1991 70(2012), 1-2 vom: 25. Mai, Seite 105-115 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:70 year:2012 number:1-2 day:25 month:05 pages:105-115 https://doi.org/10.1007/s10623-012-9678-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4126 AR 70 2012 1-2 25 05 105-115 |
allfields_unstemmed |
10.1007/s10623-012-9678-2 doi (DE-627)OLC2027293833 (DE-He213)s10623-012-9678-2-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Pernas, Jaume verfasserin aut Characterization of the automorphism group of quaternary linear Hadamard codes 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2012 Abstract A quaternary linear Hadamard code $${\mathcal{C}}$$ is a code over $${\mathbb{Z}_4}$$ such that, under the Gray map, gives a binary Hadamard code. The permutation automorphism group of a quaternary linear code $${\mathcal{C}}$$ of length n is defined as $${{\rm PAut}(\mathcal{C}) = \{\sigma \in S_{n} : \sigma(\mathcal{C}) = \mathcal{C}\}}$$. In this paper, the order of the permutation automorphism group of a family of quaternary linear Hadamard codes is established. Moreover, these groups are completely characterized by computing the orbits of the action of $${{\rm PAut}(\mathcal{C})}$$ on $${\mathcal{C}}$$ and by giving the generators of the group. Since the dual of a Hadamard code is an extended 1-perfect code in the quaternary sense, the permutation automorphism group of these codes is also computed. Quaternary linear codes Hadamard codes 1-Perfect codes Permutation automorphism group Pujol, Jaume aut Villanueva, Mercè aut Enthalten in Designs, codes and cryptography Springer US, 1991 70(2012), 1-2 vom: 25. Mai, Seite 105-115 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:70 year:2012 number:1-2 day:25 month:05 pages:105-115 https://doi.org/10.1007/s10623-012-9678-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4126 AR 70 2012 1-2 25 05 105-115 |
allfieldsGer |
10.1007/s10623-012-9678-2 doi (DE-627)OLC2027293833 (DE-He213)s10623-012-9678-2-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Pernas, Jaume verfasserin aut Characterization of the automorphism group of quaternary linear Hadamard codes 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2012 Abstract A quaternary linear Hadamard code $${\mathcal{C}}$$ is a code over $${\mathbb{Z}_4}$$ such that, under the Gray map, gives a binary Hadamard code. The permutation automorphism group of a quaternary linear code $${\mathcal{C}}$$ of length n is defined as $${{\rm PAut}(\mathcal{C}) = \{\sigma \in S_{n} : \sigma(\mathcal{C}) = \mathcal{C}\}}$$. In this paper, the order of the permutation automorphism group of a family of quaternary linear Hadamard codes is established. Moreover, these groups are completely characterized by computing the orbits of the action of $${{\rm PAut}(\mathcal{C})}$$ on $${\mathcal{C}}$$ and by giving the generators of the group. Since the dual of a Hadamard code is an extended 1-perfect code in the quaternary sense, the permutation automorphism group of these codes is also computed. Quaternary linear codes Hadamard codes 1-Perfect codes Permutation automorphism group Pujol, Jaume aut Villanueva, Mercè aut Enthalten in Designs, codes and cryptography Springer US, 1991 70(2012), 1-2 vom: 25. Mai, Seite 105-115 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:70 year:2012 number:1-2 day:25 month:05 pages:105-115 https://doi.org/10.1007/s10623-012-9678-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4126 AR 70 2012 1-2 25 05 105-115 |
allfieldsSound |
10.1007/s10623-012-9678-2 doi (DE-627)OLC2027293833 (DE-He213)s10623-012-9678-2-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Pernas, Jaume verfasserin aut Characterization of the automorphism group of quaternary linear Hadamard codes 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2012 Abstract A quaternary linear Hadamard code $${\mathcal{C}}$$ is a code over $${\mathbb{Z}_4}$$ such that, under the Gray map, gives a binary Hadamard code. The permutation automorphism group of a quaternary linear code $${\mathcal{C}}$$ of length n is defined as $${{\rm PAut}(\mathcal{C}) = \{\sigma \in S_{n} : \sigma(\mathcal{C}) = \mathcal{C}\}}$$. In this paper, the order of the permutation automorphism group of a family of quaternary linear Hadamard codes is established. Moreover, these groups are completely characterized by computing the orbits of the action of $${{\rm PAut}(\mathcal{C})}$$ on $${\mathcal{C}}$$ and by giving the generators of the group. Since the dual of a Hadamard code is an extended 1-perfect code in the quaternary sense, the permutation automorphism group of these codes is also computed. Quaternary linear codes Hadamard codes 1-Perfect codes Permutation automorphism group Pujol, Jaume aut Villanueva, Mercè aut Enthalten in Designs, codes and cryptography Springer US, 1991 70(2012), 1-2 vom: 25. Mai, Seite 105-115 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:70 year:2012 number:1-2 day:25 month:05 pages:105-115 https://doi.org/10.1007/s10623-012-9678-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4126 AR 70 2012 1-2 25 05 105-115 |
language |
English |
source |
Enthalten in Designs, codes and cryptography 70(2012), 1-2 vom: 25. Mai, Seite 105-115 volume:70 year:2012 number:1-2 day:25 month:05 pages:105-115 |
sourceStr |
Enthalten in Designs, codes and cryptography 70(2012), 1-2 vom: 25. Mai, Seite 105-115 volume:70 year:2012 number:1-2 day:25 month:05 pages:105-115 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Quaternary linear codes Hadamard codes 1-Perfect codes Permutation automorphism group |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Designs, codes and cryptography |
authorswithroles_txt_mv |
Pernas, Jaume @@aut@@ Pujol, Jaume @@aut@@ Villanueva, Mercè @@aut@@ |
publishDateDaySort_date |
2012-05-25T00:00:00Z |
hierarchy_top_id |
130994197 |
dewey-sort |
14 |
id |
OLC2027293833 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2027293833</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503040809.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10623-012-9678-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2027293833</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10623-012-9678-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pernas, Jaume</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterization of the automorphism group of quaternary linear Hadamard codes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A quaternary linear Hadamard code $${\mathcal{C}}$$ is a code over $${\mathbb{Z}_4}$$ such that, under the Gray map, gives a binary Hadamard code. The permutation automorphism group of a quaternary linear code $${\mathcal{C}}$$ of length n is defined as $${{\rm PAut}(\mathcal{C}) = \{\sigma \in S_{n} : \sigma(\mathcal{C}) = \mathcal{C}\}}$$. In this paper, the order of the permutation automorphism group of a family of quaternary linear Hadamard codes is established. Moreover, these groups are completely characterized by computing the orbits of the action of $${{\rm PAut}(\mathcal{C})}$$ on $${\mathcal{C}}$$ and by giving the generators of the group. Since the dual of a Hadamard code is an extended 1-perfect code in the quaternary sense, the permutation automorphism group of these codes is also computed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quaternary linear codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hadamard codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">1-Perfect codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Permutation automorphism group</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pujol, Jaume</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Villanueva, Mercè</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Designs, codes and cryptography</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">70(2012), 1-2 vom: 25. Mai, Seite 105-115</subfield><subfield code="w">(DE-627)130994197</subfield><subfield code="w">(DE-600)1082042-5</subfield><subfield code="w">(DE-576)029154375</subfield><subfield code="x">0925-1022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:70</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:25</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:105-115</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10623-012-9678-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">70</subfield><subfield code="j">2012</subfield><subfield code="e">1-2</subfield><subfield code="b">25</subfield><subfield code="c">05</subfield><subfield code="h">105-115</subfield></datafield></record></collection>
|
author |
Pernas, Jaume |
spellingShingle |
Pernas, Jaume ddc 004 ssgn 17,1 misc Quaternary linear codes misc Hadamard codes misc 1-Perfect codes misc Permutation automorphism group Characterization of the automorphism group of quaternary linear Hadamard codes |
authorStr |
Pernas, Jaume |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130994197 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0925-1022 |
topic_title |
004 VZ 17,1 ssgn Characterization of the automorphism group of quaternary linear Hadamard codes Quaternary linear codes Hadamard codes 1-Perfect codes Permutation automorphism group |
topic |
ddc 004 ssgn 17,1 misc Quaternary linear codes misc Hadamard codes misc 1-Perfect codes misc Permutation automorphism group |
topic_unstemmed |
ddc 004 ssgn 17,1 misc Quaternary linear codes misc Hadamard codes misc 1-Perfect codes misc Permutation automorphism group |
topic_browse |
ddc 004 ssgn 17,1 misc Quaternary linear codes misc Hadamard codes misc 1-Perfect codes misc Permutation automorphism group |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Designs, codes and cryptography |
hierarchy_parent_id |
130994197 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Designs, codes and cryptography |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 |
title |
Characterization of the automorphism group of quaternary linear Hadamard codes |
ctrlnum |
(DE-627)OLC2027293833 (DE-He213)s10623-012-9678-2-p |
title_full |
Characterization of the automorphism group of quaternary linear Hadamard codes |
author_sort |
Pernas, Jaume |
journal |
Designs, codes and cryptography |
journalStr |
Designs, codes and cryptography |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
105 |
author_browse |
Pernas, Jaume Pujol, Jaume Villanueva, Mercè |
container_volume |
70 |
class |
004 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Pernas, Jaume |
doi_str_mv |
10.1007/s10623-012-9678-2 |
dewey-full |
004 |
title_sort |
characterization of the automorphism group of quaternary linear hadamard codes |
title_auth |
Characterization of the automorphism group of quaternary linear Hadamard codes |
abstract |
Abstract A quaternary linear Hadamard code $${\mathcal{C}}$$ is a code over $${\mathbb{Z}_4}$$ such that, under the Gray map, gives a binary Hadamard code. The permutation automorphism group of a quaternary linear code $${\mathcal{C}}$$ of length n is defined as $${{\rm PAut}(\mathcal{C}) = \{\sigma \in S_{n} : \sigma(\mathcal{C}) = \mathcal{C}\}}$$. In this paper, the order of the permutation automorphism group of a family of quaternary linear Hadamard codes is established. Moreover, these groups are completely characterized by computing the orbits of the action of $${{\rm PAut}(\mathcal{C})}$$ on $${\mathcal{C}}$$ and by giving the generators of the group. Since the dual of a Hadamard code is an extended 1-perfect code in the quaternary sense, the permutation automorphism group of these codes is also computed. © Springer Science+Business Media, LLC 2012 |
abstractGer |
Abstract A quaternary linear Hadamard code $${\mathcal{C}}$$ is a code over $${\mathbb{Z}_4}$$ such that, under the Gray map, gives a binary Hadamard code. The permutation automorphism group of a quaternary linear code $${\mathcal{C}}$$ of length n is defined as $${{\rm PAut}(\mathcal{C}) = \{\sigma \in S_{n} : \sigma(\mathcal{C}) = \mathcal{C}\}}$$. In this paper, the order of the permutation automorphism group of a family of quaternary linear Hadamard codes is established. Moreover, these groups are completely characterized by computing the orbits of the action of $${{\rm PAut}(\mathcal{C})}$$ on $${\mathcal{C}}$$ and by giving the generators of the group. Since the dual of a Hadamard code is an extended 1-perfect code in the quaternary sense, the permutation automorphism group of these codes is also computed. © Springer Science+Business Media, LLC 2012 |
abstract_unstemmed |
Abstract A quaternary linear Hadamard code $${\mathcal{C}}$$ is a code over $${\mathbb{Z}_4}$$ such that, under the Gray map, gives a binary Hadamard code. The permutation automorphism group of a quaternary linear code $${\mathcal{C}}$$ of length n is defined as $${{\rm PAut}(\mathcal{C}) = \{\sigma \in S_{n} : \sigma(\mathcal{C}) = \mathcal{C}\}}$$. In this paper, the order of the permutation automorphism group of a family of quaternary linear Hadamard codes is established. Moreover, these groups are completely characterized by computing the orbits of the action of $${{\rm PAut}(\mathcal{C})}$$ on $${\mathcal{C}}$$ and by giving the generators of the group. Since the dual of a Hadamard code is an extended 1-perfect code in the quaternary sense, the permutation automorphism group of these codes is also computed. © Springer Science+Business Media, LLC 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4126 |
container_issue |
1-2 |
title_short |
Characterization of the automorphism group of quaternary linear Hadamard codes |
url |
https://doi.org/10.1007/s10623-012-9678-2 |
remote_bool |
false |
author2 |
Pujol, Jaume Villanueva, Mercè |
author2Str |
Pujol, Jaume Villanueva, Mercè |
ppnlink |
130994197 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10623-012-9678-2 |
up_date |
2024-07-03T14:47:12.894Z |
_version_ |
1803569628864053248 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2027293833</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503040809.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10623-012-9678-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2027293833</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10623-012-9678-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pernas, Jaume</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterization of the automorphism group of quaternary linear Hadamard codes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A quaternary linear Hadamard code $${\mathcal{C}}$$ is a code over $${\mathbb{Z}_4}$$ such that, under the Gray map, gives a binary Hadamard code. The permutation automorphism group of a quaternary linear code $${\mathcal{C}}$$ of length n is defined as $${{\rm PAut}(\mathcal{C}) = \{\sigma \in S_{n} : \sigma(\mathcal{C}) = \mathcal{C}\}}$$. In this paper, the order of the permutation automorphism group of a family of quaternary linear Hadamard codes is established. Moreover, these groups are completely characterized by computing the orbits of the action of $${{\rm PAut}(\mathcal{C})}$$ on $${\mathcal{C}}$$ and by giving the generators of the group. Since the dual of a Hadamard code is an extended 1-perfect code in the quaternary sense, the permutation automorphism group of these codes is also computed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quaternary linear codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hadamard codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">1-Perfect codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Permutation automorphism group</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pujol, Jaume</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Villanueva, Mercè</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Designs, codes and cryptography</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">70(2012), 1-2 vom: 25. Mai, Seite 105-115</subfield><subfield code="w">(DE-627)130994197</subfield><subfield code="w">(DE-600)1082042-5</subfield><subfield code="w">(DE-576)029154375</subfield><subfield code="x">0925-1022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:70</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:25</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:105-115</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10623-012-9678-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">70</subfield><subfield code="j">2012</subfield><subfield code="e">1-2</subfield><subfield code="b">25</subfield><subfield code="c">05</subfield><subfield code="h">105-115</subfield></datafield></record></collection>
|
score |
7.402128 |