The $$k$$-error linear complexity distribution for $$2^n$$-periodic binary sequences
Abstract The linear complexity and the $$k$$-error linear complexity of a sequence have been used as important security measures for key stream sequence strength in linear feedback shift register design. By using the sieve method of combinatorics, we investigate the $$k$$-error linear complexity dis...
Ausführliche Beschreibung
Autor*in: |
Zhou, Jianqin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Designs, codes and cryptography - Springer US, 1991, 73(2013), 1 vom: 10. März, Seite 55-75 |
---|---|
Übergeordnetes Werk: |
volume:73 ; year:2013 ; number:1 ; day:10 ; month:03 ; pages:55-75 |
Links: |
---|
DOI / URN: |
10.1007/s10623-013-9805-8 |
---|
Katalog-ID: |
OLC2027294996 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2027294996 | ||
003 | DE-627 | ||
005 | 20230503040818.0 | ||
007 | tu | ||
008 | 200819s2013 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10623-013-9805-8 |2 doi | |
035 | |a (DE-627)OLC2027294996 | ||
035 | |a (DE-He213)s10623-013-9805-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Zhou, Jianqin |e verfasserin |4 aut | |
245 | 1 | 0 | |a The $$k$$-error linear complexity distribution for $$2^n$$-periodic binary sequences |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2013 | ||
520 | |a Abstract The linear complexity and the $$k$$-error linear complexity of a sequence have been used as important security measures for key stream sequence strength in linear feedback shift register design. By using the sieve method of combinatorics, we investigate the $$k$$-error linear complexity distribution of $$2^n$$-periodic binary sequences in this paper based on Games–Chan algorithm. First, for $$k=2,3$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences (with linear complexity less than $$2^n$$) are characterized. Second, for $$k=3,4$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences with linear complexity $$2^n$$ are presented. Third, as a consequence of these results, the counting functions for the number of $$2^n$$-periodic binary sequences with the $$k$$-error linear complexity for $$k = 2$$ and $$3$$ are obtained. | ||
650 | 4 | |a Periodic sequence | |
650 | 4 | |a Linear complexity | |
650 | 4 | |a -error linear complexity | |
650 | 4 | |a -error linear complexity distribution | |
700 | 1 | |a Liu, Wanquan |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Designs, codes and cryptography |d Springer US, 1991 |g 73(2013), 1 vom: 10. März, Seite 55-75 |w (DE-627)130994197 |w (DE-600)1082042-5 |w (DE-576)029154375 |x 0925-1022 |7 nnns |
773 | 1 | 8 | |g volume:73 |g year:2013 |g number:1 |g day:10 |g month:03 |g pages:55-75 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10623-013-9805-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4126 | ||
951 | |a AR | ||
952 | |d 73 |j 2013 |e 1 |b 10 |c 03 |h 55-75 |
author_variant |
j z jz w l wl |
---|---|
matchkey_str |
article:09251022:2013----::hkrolnacmlxtdsrbtofrneid |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1007/s10623-013-9805-8 doi (DE-627)OLC2027294996 (DE-He213)s10623-013-9805-8-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Zhou, Jianqin verfasserin aut The $$k$$-error linear complexity distribution for $$2^n$$-periodic binary sequences 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract The linear complexity and the $$k$$-error linear complexity of a sequence have been used as important security measures for key stream sequence strength in linear feedback shift register design. By using the sieve method of combinatorics, we investigate the $$k$$-error linear complexity distribution of $$2^n$$-periodic binary sequences in this paper based on Games–Chan algorithm. First, for $$k=2,3$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences (with linear complexity less than $$2^n$$) are characterized. Second, for $$k=3,4$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences with linear complexity $$2^n$$ are presented. Third, as a consequence of these results, the counting functions for the number of $$2^n$$-periodic binary sequences with the $$k$$-error linear complexity for $$k = 2$$ and $$3$$ are obtained. Periodic sequence Linear complexity -error linear complexity -error linear complexity distribution Liu, Wanquan aut Enthalten in Designs, codes and cryptography Springer US, 1991 73(2013), 1 vom: 10. März, Seite 55-75 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:73 year:2013 number:1 day:10 month:03 pages:55-75 https://doi.org/10.1007/s10623-013-9805-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4126 AR 73 2013 1 10 03 55-75 |
spelling |
10.1007/s10623-013-9805-8 doi (DE-627)OLC2027294996 (DE-He213)s10623-013-9805-8-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Zhou, Jianqin verfasserin aut The $$k$$-error linear complexity distribution for $$2^n$$-periodic binary sequences 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract The linear complexity and the $$k$$-error linear complexity of a sequence have been used as important security measures for key stream sequence strength in linear feedback shift register design. By using the sieve method of combinatorics, we investigate the $$k$$-error linear complexity distribution of $$2^n$$-periodic binary sequences in this paper based on Games–Chan algorithm. First, for $$k=2,3$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences (with linear complexity less than $$2^n$$) are characterized. Second, for $$k=3,4$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences with linear complexity $$2^n$$ are presented. Third, as a consequence of these results, the counting functions for the number of $$2^n$$-periodic binary sequences with the $$k$$-error linear complexity for $$k = 2$$ and $$3$$ are obtained. Periodic sequence Linear complexity -error linear complexity -error linear complexity distribution Liu, Wanquan aut Enthalten in Designs, codes and cryptography Springer US, 1991 73(2013), 1 vom: 10. März, Seite 55-75 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:73 year:2013 number:1 day:10 month:03 pages:55-75 https://doi.org/10.1007/s10623-013-9805-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4126 AR 73 2013 1 10 03 55-75 |
allfields_unstemmed |
10.1007/s10623-013-9805-8 doi (DE-627)OLC2027294996 (DE-He213)s10623-013-9805-8-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Zhou, Jianqin verfasserin aut The $$k$$-error linear complexity distribution for $$2^n$$-periodic binary sequences 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract The linear complexity and the $$k$$-error linear complexity of a sequence have been used as important security measures for key stream sequence strength in linear feedback shift register design. By using the sieve method of combinatorics, we investigate the $$k$$-error linear complexity distribution of $$2^n$$-periodic binary sequences in this paper based on Games–Chan algorithm. First, for $$k=2,3$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences (with linear complexity less than $$2^n$$) are characterized. Second, for $$k=3,4$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences with linear complexity $$2^n$$ are presented. Third, as a consequence of these results, the counting functions for the number of $$2^n$$-periodic binary sequences with the $$k$$-error linear complexity for $$k = 2$$ and $$3$$ are obtained. Periodic sequence Linear complexity -error linear complexity -error linear complexity distribution Liu, Wanquan aut Enthalten in Designs, codes and cryptography Springer US, 1991 73(2013), 1 vom: 10. März, Seite 55-75 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:73 year:2013 number:1 day:10 month:03 pages:55-75 https://doi.org/10.1007/s10623-013-9805-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4126 AR 73 2013 1 10 03 55-75 |
allfieldsGer |
10.1007/s10623-013-9805-8 doi (DE-627)OLC2027294996 (DE-He213)s10623-013-9805-8-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Zhou, Jianqin verfasserin aut The $$k$$-error linear complexity distribution for $$2^n$$-periodic binary sequences 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract The linear complexity and the $$k$$-error linear complexity of a sequence have been used as important security measures for key stream sequence strength in linear feedback shift register design. By using the sieve method of combinatorics, we investigate the $$k$$-error linear complexity distribution of $$2^n$$-periodic binary sequences in this paper based on Games–Chan algorithm. First, for $$k=2,3$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences (with linear complexity less than $$2^n$$) are characterized. Second, for $$k=3,4$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences with linear complexity $$2^n$$ are presented. Third, as a consequence of these results, the counting functions for the number of $$2^n$$-periodic binary sequences with the $$k$$-error linear complexity for $$k = 2$$ and $$3$$ are obtained. Periodic sequence Linear complexity -error linear complexity -error linear complexity distribution Liu, Wanquan aut Enthalten in Designs, codes and cryptography Springer US, 1991 73(2013), 1 vom: 10. März, Seite 55-75 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:73 year:2013 number:1 day:10 month:03 pages:55-75 https://doi.org/10.1007/s10623-013-9805-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4126 AR 73 2013 1 10 03 55-75 |
allfieldsSound |
10.1007/s10623-013-9805-8 doi (DE-627)OLC2027294996 (DE-He213)s10623-013-9805-8-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Zhou, Jianqin verfasserin aut The $$k$$-error linear complexity distribution for $$2^n$$-periodic binary sequences 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract The linear complexity and the $$k$$-error linear complexity of a sequence have been used as important security measures for key stream sequence strength in linear feedback shift register design. By using the sieve method of combinatorics, we investigate the $$k$$-error linear complexity distribution of $$2^n$$-periodic binary sequences in this paper based on Games–Chan algorithm. First, for $$k=2,3$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences (with linear complexity less than $$2^n$$) are characterized. Second, for $$k=3,4$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences with linear complexity $$2^n$$ are presented. Third, as a consequence of these results, the counting functions for the number of $$2^n$$-periodic binary sequences with the $$k$$-error linear complexity for $$k = 2$$ and $$3$$ are obtained. Periodic sequence Linear complexity -error linear complexity -error linear complexity distribution Liu, Wanquan aut Enthalten in Designs, codes and cryptography Springer US, 1991 73(2013), 1 vom: 10. März, Seite 55-75 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:73 year:2013 number:1 day:10 month:03 pages:55-75 https://doi.org/10.1007/s10623-013-9805-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4126 AR 73 2013 1 10 03 55-75 |
language |
English |
source |
Enthalten in Designs, codes and cryptography 73(2013), 1 vom: 10. März, Seite 55-75 volume:73 year:2013 number:1 day:10 month:03 pages:55-75 |
sourceStr |
Enthalten in Designs, codes and cryptography 73(2013), 1 vom: 10. März, Seite 55-75 volume:73 year:2013 number:1 day:10 month:03 pages:55-75 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Periodic sequence Linear complexity -error linear complexity -error linear complexity distribution |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Designs, codes and cryptography |
authorswithroles_txt_mv |
Zhou, Jianqin @@aut@@ Liu, Wanquan @@aut@@ |
publishDateDaySort_date |
2013-03-10T00:00:00Z |
hierarchy_top_id |
130994197 |
dewey-sort |
14 |
id |
OLC2027294996 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2027294996</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503040818.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10623-013-9805-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2027294996</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10623-013-9805-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Jianqin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The $$k$$-error linear complexity distribution for $$2^n$$-periodic binary sequences</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The linear complexity and the $$k$$-error linear complexity of a sequence have been used as important security measures for key stream sequence strength in linear feedback shift register design. By using the sieve method of combinatorics, we investigate the $$k$$-error linear complexity distribution of $$2^n$$-periodic binary sequences in this paper based on Games–Chan algorithm. First, for $$k=2,3$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences (with linear complexity less than $$2^n$$) are characterized. Second, for $$k=3,4$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences with linear complexity $$2^n$$ are presented. Third, as a consequence of these results, the counting functions for the number of $$2^n$$-periodic binary sequences with the $$k$$-error linear complexity for $$k = 2$$ and $$3$$ are obtained.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodic sequence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-error linear complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-error linear complexity distribution</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Wanquan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Designs, codes and cryptography</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">73(2013), 1 vom: 10. März, Seite 55-75</subfield><subfield code="w">(DE-627)130994197</subfield><subfield code="w">(DE-600)1082042-5</subfield><subfield code="w">(DE-576)029154375</subfield><subfield code="x">0925-1022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:73</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:10</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:55-75</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10623-013-9805-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">73</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">10</subfield><subfield code="c">03</subfield><subfield code="h">55-75</subfield></datafield></record></collection>
|
author |
Zhou, Jianqin |
spellingShingle |
Zhou, Jianqin ddc 004 ssgn 17,1 misc Periodic sequence misc Linear complexity misc -error linear complexity misc -error linear complexity distribution The $$k$$-error linear complexity distribution for $$2^n$$-periodic binary sequences |
authorStr |
Zhou, Jianqin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130994197 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0925-1022 |
topic_title |
004 VZ 17,1 ssgn The $$k$$-error linear complexity distribution for $$2^n$$-periodic binary sequences Periodic sequence Linear complexity -error linear complexity -error linear complexity distribution |
topic |
ddc 004 ssgn 17,1 misc Periodic sequence misc Linear complexity misc -error linear complexity misc -error linear complexity distribution |
topic_unstemmed |
ddc 004 ssgn 17,1 misc Periodic sequence misc Linear complexity misc -error linear complexity misc -error linear complexity distribution |
topic_browse |
ddc 004 ssgn 17,1 misc Periodic sequence misc Linear complexity misc -error linear complexity misc -error linear complexity distribution |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Designs, codes and cryptography |
hierarchy_parent_id |
130994197 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Designs, codes and cryptography |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 |
title |
The $$k$$-error linear complexity distribution for $$2^n$$-periodic binary sequences |
ctrlnum |
(DE-627)OLC2027294996 (DE-He213)s10623-013-9805-8-p |
title_full |
The $$k$$-error linear complexity distribution for $$2^n$$-periodic binary sequences |
author_sort |
Zhou, Jianqin |
journal |
Designs, codes and cryptography |
journalStr |
Designs, codes and cryptography |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
55 |
author_browse |
Zhou, Jianqin Liu, Wanquan |
container_volume |
73 |
class |
004 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Zhou, Jianqin |
doi_str_mv |
10.1007/s10623-013-9805-8 |
dewey-full |
004 |
title_sort |
the $$k$$-error linear complexity distribution for $$2^n$$-periodic binary sequences |
title_auth |
The $$k$$-error linear complexity distribution for $$2^n$$-periodic binary sequences |
abstract |
Abstract The linear complexity and the $$k$$-error linear complexity of a sequence have been used as important security measures for key stream sequence strength in linear feedback shift register design. By using the sieve method of combinatorics, we investigate the $$k$$-error linear complexity distribution of $$2^n$$-periodic binary sequences in this paper based on Games–Chan algorithm. First, for $$k=2,3$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences (with linear complexity less than $$2^n$$) are characterized. Second, for $$k=3,4$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences with linear complexity $$2^n$$ are presented. Third, as a consequence of these results, the counting functions for the number of $$2^n$$-periodic binary sequences with the $$k$$-error linear complexity for $$k = 2$$ and $$3$$ are obtained. © Springer Science+Business Media New York 2013 |
abstractGer |
Abstract The linear complexity and the $$k$$-error linear complexity of a sequence have been used as important security measures for key stream sequence strength in linear feedback shift register design. By using the sieve method of combinatorics, we investigate the $$k$$-error linear complexity distribution of $$2^n$$-periodic binary sequences in this paper based on Games–Chan algorithm. First, for $$k=2,3$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences (with linear complexity less than $$2^n$$) are characterized. Second, for $$k=3,4$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences with linear complexity $$2^n$$ are presented. Third, as a consequence of these results, the counting functions for the number of $$2^n$$-periodic binary sequences with the $$k$$-error linear complexity for $$k = 2$$ and $$3$$ are obtained. © Springer Science+Business Media New York 2013 |
abstract_unstemmed |
Abstract The linear complexity and the $$k$$-error linear complexity of a sequence have been used as important security measures for key stream sequence strength in linear feedback shift register design. By using the sieve method of combinatorics, we investigate the $$k$$-error linear complexity distribution of $$2^n$$-periodic binary sequences in this paper based on Games–Chan algorithm. First, for $$k=2,3$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences (with linear complexity less than $$2^n$$) are characterized. Second, for $$k=3,4$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences with linear complexity $$2^n$$ are presented. Third, as a consequence of these results, the counting functions for the number of $$2^n$$-periodic binary sequences with the $$k$$-error linear complexity for $$k = 2$$ and $$3$$ are obtained. © Springer Science+Business Media New York 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4126 |
container_issue |
1 |
title_short |
The $$k$$-error linear complexity distribution for $$2^n$$-periodic binary sequences |
url |
https://doi.org/10.1007/s10623-013-9805-8 |
remote_bool |
false |
author2 |
Liu, Wanquan |
author2Str |
Liu, Wanquan |
ppnlink |
130994197 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10623-013-9805-8 |
up_date |
2024-07-03T14:47:29.096Z |
_version_ |
1803569645852033024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2027294996</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503040818.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10623-013-9805-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2027294996</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10623-013-9805-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Jianqin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The $$k$$-error linear complexity distribution for $$2^n$$-periodic binary sequences</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The linear complexity and the $$k$$-error linear complexity of a sequence have been used as important security measures for key stream sequence strength in linear feedback shift register design. By using the sieve method of combinatorics, we investigate the $$k$$-error linear complexity distribution of $$2^n$$-periodic binary sequences in this paper based on Games–Chan algorithm. First, for $$k=2,3$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences (with linear complexity less than $$2^n$$) are characterized. Second, for $$k=3,4$$, the complete counting functions for the $$k$$-error linear complexity of $$2^n$$-periodic binary sequences with linear complexity $$2^n$$ are presented. Third, as a consequence of these results, the counting functions for the number of $$2^n$$-periodic binary sequences with the $$k$$-error linear complexity for $$k = 2$$ and $$3$$ are obtained.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Periodic sequence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-error linear complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-error linear complexity distribution</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Wanquan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Designs, codes and cryptography</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">73(2013), 1 vom: 10. März, Seite 55-75</subfield><subfield code="w">(DE-627)130994197</subfield><subfield code="w">(DE-600)1082042-5</subfield><subfield code="w">(DE-576)029154375</subfield><subfield code="x">0925-1022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:73</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:10</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:55-75</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10623-013-9805-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">73</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">10</subfield><subfield code="c">03</subfield><subfield code="h">55-75</subfield></datafield></record></collection>
|
score |
7.4000444 |