On the asymptotics with respect to a parameter of solutions of differential systems with coefficients in the class Lq
Abstract We consider a system of first-order ordinary linear differential equations with coefficients depending on an arbitrary parameter λ. For large λ, if the coefficients are smooth with respect to x, then there are known classical exponentially asymptotic (with respect to λ) formulas for the sol...
Ausführliche Beschreibung
Autor*in: |
Vagabov, A. I. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Differential equations - SP MAIK Nauka/Interperiodica, 1965, 46(2010), 1 vom: Jan., Seite 17-23 |
---|---|
Übergeordnetes Werk: |
volume:46 ; year:2010 ; number:1 ; month:01 ; pages:17-23 |
Links: |
---|
DOI / URN: |
10.1134/S0012266110010039 |
---|
Katalog-ID: |
OLC2027336516 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2027336516 | ||
003 | DE-627 | ||
005 | 20230503041141.0 | ||
007 | tu | ||
008 | 200819s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S0012266110010039 |2 doi | |
035 | |a (DE-627)OLC2027336516 | ||
035 | |a (DE-He213)S0012266110010039-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Vagabov, A. I. |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the asymptotics with respect to a parameter of solutions of differential systems with coefficients in the class Lq |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2010 | ||
520 | |a Abstract We consider a system of first-order ordinary linear differential equations with coefficients depending on an arbitrary parameter λ. For large λ, if the coefficients are smooth with respect to x, then there are known classical exponentially asymptotic (with respect to λ) formulas for the solution of the system. We generalize such formulas to the case in which the coefficients belong to the class Lq, q > 1. We use a new method for the reduction of problems to an integral system of special form. | ||
650 | 4 | |a Integral Operator | |
650 | 4 | |a Matrix Function | |
650 | 4 | |a Matrix Solution | |
650 | 4 | |a Fundamental Matrix | |
650 | 4 | |a Arbitrary Parameter | |
773 | 0 | 8 | |i Enthalten in |t Differential equations |d SP MAIK Nauka/Interperiodica, 1965 |g 46(2010), 1 vom: Jan., Seite 17-23 |w (DE-627)129604852 |w (DE-600)241983-X |w (DE-576)015098982 |x 0012-2661 |7 nnns |
773 | 1 | 8 | |g volume:46 |g year:2010 |g number:1 |g month:01 |g pages:17-23 |
856 | 4 | 1 | |u https://doi.org/10.1134/S0012266110010039 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.00 |q VZ |
951 | |a AR | ||
952 | |d 46 |j 2010 |e 1 |c 01 |h 17-23 |
author_variant |
a i v ai aiv |
---|---|
matchkey_str |
article:00122661:2010----::nhaypoisihepctaaaeeosltosfifrnilytmw |
hierarchy_sort_str |
2010 |
bklnumber |
31.00 |
publishDate |
2010 |
allfields |
10.1134/S0012266110010039 doi (DE-627)OLC2027336516 (DE-He213)S0012266110010039-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Vagabov, A. I. verfasserin aut On the asymptotics with respect to a parameter of solutions of differential systems with coefficients in the class Lq 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2010 Abstract We consider a system of first-order ordinary linear differential equations with coefficients depending on an arbitrary parameter λ. For large λ, if the coefficients are smooth with respect to x, then there are known classical exponentially asymptotic (with respect to λ) formulas for the solution of the system. We generalize such formulas to the case in which the coefficients belong to the class Lq, q > 1. We use a new method for the reduction of problems to an integral system of special form. Integral Operator Matrix Function Matrix Solution Fundamental Matrix Arbitrary Parameter Enthalten in Differential equations SP MAIK Nauka/Interperiodica, 1965 46(2010), 1 vom: Jan., Seite 17-23 (DE-627)129604852 (DE-600)241983-X (DE-576)015098982 0012-2661 nnns volume:46 year:2010 number:1 month:01 pages:17-23 https://doi.org/10.1134/S0012266110010039 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 31.00 VZ AR 46 2010 1 01 17-23 |
spelling |
10.1134/S0012266110010039 doi (DE-627)OLC2027336516 (DE-He213)S0012266110010039-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Vagabov, A. I. verfasserin aut On the asymptotics with respect to a parameter of solutions of differential systems with coefficients in the class Lq 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2010 Abstract We consider a system of first-order ordinary linear differential equations with coefficients depending on an arbitrary parameter λ. For large λ, if the coefficients are smooth with respect to x, then there are known classical exponentially asymptotic (with respect to λ) formulas for the solution of the system. We generalize such formulas to the case in which the coefficients belong to the class Lq, q > 1. We use a new method for the reduction of problems to an integral system of special form. Integral Operator Matrix Function Matrix Solution Fundamental Matrix Arbitrary Parameter Enthalten in Differential equations SP MAIK Nauka/Interperiodica, 1965 46(2010), 1 vom: Jan., Seite 17-23 (DE-627)129604852 (DE-600)241983-X (DE-576)015098982 0012-2661 nnns volume:46 year:2010 number:1 month:01 pages:17-23 https://doi.org/10.1134/S0012266110010039 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 31.00 VZ AR 46 2010 1 01 17-23 |
allfields_unstemmed |
10.1134/S0012266110010039 doi (DE-627)OLC2027336516 (DE-He213)S0012266110010039-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Vagabov, A. I. verfasserin aut On the asymptotics with respect to a parameter of solutions of differential systems with coefficients in the class Lq 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2010 Abstract We consider a system of first-order ordinary linear differential equations with coefficients depending on an arbitrary parameter λ. For large λ, if the coefficients are smooth with respect to x, then there are known classical exponentially asymptotic (with respect to λ) formulas for the solution of the system. We generalize such formulas to the case in which the coefficients belong to the class Lq, q > 1. We use a new method for the reduction of problems to an integral system of special form. Integral Operator Matrix Function Matrix Solution Fundamental Matrix Arbitrary Parameter Enthalten in Differential equations SP MAIK Nauka/Interperiodica, 1965 46(2010), 1 vom: Jan., Seite 17-23 (DE-627)129604852 (DE-600)241983-X (DE-576)015098982 0012-2661 nnns volume:46 year:2010 number:1 month:01 pages:17-23 https://doi.org/10.1134/S0012266110010039 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 31.00 VZ AR 46 2010 1 01 17-23 |
allfieldsGer |
10.1134/S0012266110010039 doi (DE-627)OLC2027336516 (DE-He213)S0012266110010039-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Vagabov, A. I. verfasserin aut On the asymptotics with respect to a parameter of solutions of differential systems with coefficients in the class Lq 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2010 Abstract We consider a system of first-order ordinary linear differential equations with coefficients depending on an arbitrary parameter λ. For large λ, if the coefficients are smooth with respect to x, then there are known classical exponentially asymptotic (with respect to λ) formulas for the solution of the system. We generalize such formulas to the case in which the coefficients belong to the class Lq, q > 1. We use a new method for the reduction of problems to an integral system of special form. Integral Operator Matrix Function Matrix Solution Fundamental Matrix Arbitrary Parameter Enthalten in Differential equations SP MAIK Nauka/Interperiodica, 1965 46(2010), 1 vom: Jan., Seite 17-23 (DE-627)129604852 (DE-600)241983-X (DE-576)015098982 0012-2661 nnns volume:46 year:2010 number:1 month:01 pages:17-23 https://doi.org/10.1134/S0012266110010039 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 31.00 VZ AR 46 2010 1 01 17-23 |
allfieldsSound |
10.1134/S0012266110010039 doi (DE-627)OLC2027336516 (DE-He213)S0012266110010039-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Vagabov, A. I. verfasserin aut On the asymptotics with respect to a parameter of solutions of differential systems with coefficients in the class Lq 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2010 Abstract We consider a system of first-order ordinary linear differential equations with coefficients depending on an arbitrary parameter λ. For large λ, if the coefficients are smooth with respect to x, then there are known classical exponentially asymptotic (with respect to λ) formulas for the solution of the system. We generalize such formulas to the case in which the coefficients belong to the class Lq, q > 1. We use a new method for the reduction of problems to an integral system of special form. Integral Operator Matrix Function Matrix Solution Fundamental Matrix Arbitrary Parameter Enthalten in Differential equations SP MAIK Nauka/Interperiodica, 1965 46(2010), 1 vom: Jan., Seite 17-23 (DE-627)129604852 (DE-600)241983-X (DE-576)015098982 0012-2661 nnns volume:46 year:2010 number:1 month:01 pages:17-23 https://doi.org/10.1134/S0012266110010039 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 31.00 VZ AR 46 2010 1 01 17-23 |
language |
English |
source |
Enthalten in Differential equations 46(2010), 1 vom: Jan., Seite 17-23 volume:46 year:2010 number:1 month:01 pages:17-23 |
sourceStr |
Enthalten in Differential equations 46(2010), 1 vom: Jan., Seite 17-23 volume:46 year:2010 number:1 month:01 pages:17-23 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Integral Operator Matrix Function Matrix Solution Fundamental Matrix Arbitrary Parameter |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Differential equations |
authorswithroles_txt_mv |
Vagabov, A. I. @@aut@@ |
publishDateDaySort_date |
2010-01-01T00:00:00Z |
hierarchy_top_id |
129604852 |
dewey-sort |
3510 |
id |
OLC2027336516 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2027336516</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503041141.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0012266110010039</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2027336516</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0012266110010039-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vagabov, A. I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the asymptotics with respect to a parameter of solutions of differential systems with coefficients in the class Lq</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider a system of first-order ordinary linear differential equations with coefficients depending on an arbitrary parameter λ. For large λ, if the coefficients are smooth with respect to x, then there are known classical exponentially asymptotic (with respect to λ) formulas for the solution of the system. We generalize such formulas to the case in which the coefficients belong to the class Lq, q > 1. We use a new method for the reduction of problems to an integral system of special form.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix Solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fundamental Matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arbitrary Parameter</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Differential equations</subfield><subfield code="d">SP MAIK Nauka/Interperiodica, 1965</subfield><subfield code="g">46(2010), 1 vom: Jan., Seite 17-23</subfield><subfield code="w">(DE-627)129604852</subfield><subfield code="w">(DE-600)241983-X</subfield><subfield code="w">(DE-576)015098982</subfield><subfield code="x">0012-2661</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:17-23</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0012266110010039</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2010</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">17-23</subfield></datafield></record></collection>
|
author |
Vagabov, A. I. |
spellingShingle |
Vagabov, A. I. ddc 510 ssgn 17,1 bkl 31.00 misc Integral Operator misc Matrix Function misc Matrix Solution misc Fundamental Matrix misc Arbitrary Parameter On the asymptotics with respect to a parameter of solutions of differential systems with coefficients in the class Lq |
authorStr |
Vagabov, A. I. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129604852 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0012-2661 |
topic_title |
510 VZ 17,1 ssgn 31.00 bkl On the asymptotics with respect to a parameter of solutions of differential systems with coefficients in the class Lq Integral Operator Matrix Function Matrix Solution Fundamental Matrix Arbitrary Parameter |
topic |
ddc 510 ssgn 17,1 bkl 31.00 misc Integral Operator misc Matrix Function misc Matrix Solution misc Fundamental Matrix misc Arbitrary Parameter |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.00 misc Integral Operator misc Matrix Function misc Matrix Solution misc Fundamental Matrix misc Arbitrary Parameter |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.00 misc Integral Operator misc Matrix Function misc Matrix Solution misc Fundamental Matrix misc Arbitrary Parameter |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Differential equations |
hierarchy_parent_id |
129604852 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Differential equations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129604852 (DE-600)241983-X (DE-576)015098982 |
title |
On the asymptotics with respect to a parameter of solutions of differential systems with coefficients in the class Lq |
ctrlnum |
(DE-627)OLC2027336516 (DE-He213)S0012266110010039-p |
title_full |
On the asymptotics with respect to a parameter of solutions of differential systems with coefficients in the class Lq |
author_sort |
Vagabov, A. I. |
journal |
Differential equations |
journalStr |
Differential equations |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
17 |
author_browse |
Vagabov, A. I. |
container_volume |
46 |
class |
510 VZ 17,1 ssgn 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Vagabov, A. I. |
doi_str_mv |
10.1134/S0012266110010039 |
dewey-full |
510 |
title_sort |
on the asymptotics with respect to a parameter of solutions of differential systems with coefficients in the class lq |
title_auth |
On the asymptotics with respect to a parameter of solutions of differential systems with coefficients in the class Lq |
abstract |
Abstract We consider a system of first-order ordinary linear differential equations with coefficients depending on an arbitrary parameter λ. For large λ, if the coefficients are smooth with respect to x, then there are known classical exponentially asymptotic (with respect to λ) formulas for the solution of the system. We generalize such formulas to the case in which the coefficients belong to the class Lq, q > 1. We use a new method for the reduction of problems to an integral system of special form. © Pleiades Publishing, Ltd. 2010 |
abstractGer |
Abstract We consider a system of first-order ordinary linear differential equations with coefficients depending on an arbitrary parameter λ. For large λ, if the coefficients are smooth with respect to x, then there are known classical exponentially asymptotic (with respect to λ) formulas for the solution of the system. We generalize such formulas to the case in which the coefficients belong to the class Lq, q > 1. We use a new method for the reduction of problems to an integral system of special form. © Pleiades Publishing, Ltd. 2010 |
abstract_unstemmed |
Abstract We consider a system of first-order ordinary linear differential equations with coefficients depending on an arbitrary parameter λ. For large λ, if the coefficients are smooth with respect to x, then there are known classical exponentially asymptotic (with respect to λ) formulas for the solution of the system. We generalize such formulas to the case in which the coefficients belong to the class Lq, q > 1. We use a new method for the reduction of problems to an integral system of special form. © Pleiades Publishing, Ltd. 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 |
container_issue |
1 |
title_short |
On the asymptotics with respect to a parameter of solutions of differential systems with coefficients in the class Lq |
url |
https://doi.org/10.1134/S0012266110010039 |
remote_bool |
false |
ppnlink |
129604852 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S0012266110010039 |
up_date |
2024-07-03T14:55:42.436Z |
_version_ |
1803570163155468288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2027336516</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503041141.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0012266110010039</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2027336516</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0012266110010039-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vagabov, A. I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the asymptotics with respect to a parameter of solutions of differential systems with coefficients in the class Lq</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider a system of first-order ordinary linear differential equations with coefficients depending on an arbitrary parameter λ. For large λ, if the coefficients are smooth with respect to x, then there are known classical exponentially asymptotic (with respect to λ) formulas for the solution of the system. We generalize such formulas to the case in which the coefficients belong to the class Lq, q > 1. We use a new method for the reduction of problems to an integral system of special form.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix Solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fundamental Matrix</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arbitrary Parameter</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Differential equations</subfield><subfield code="d">SP MAIK Nauka/Interperiodica, 1965</subfield><subfield code="g">46(2010), 1 vom: Jan., Seite 17-23</subfield><subfield code="w">(DE-627)129604852</subfield><subfield code="w">(DE-600)241983-X</subfield><subfield code="w">(DE-576)015098982</subfield><subfield code="x">0012-2661</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:17-23</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0012266110010039</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2010</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">17-23</subfield></datafield></record></collection>
|
score |
7.4012194 |