Asymptotic analysis of singularly perturbed integro-differential equations with zero operator in the differential part
Abstract We consider an integro-differential system with identically zero operator in the differential part. We construct a regularized asymptotics of the solution of this system for two cases, one in which the integral operator contains an exponentially varying factor and the other in which it does...
Ausführliche Beschreibung
Autor*in: |
Bobodzhanova, M. A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Differential equations - SP MAIK Nauka/Interperiodica, 1965, 47(2011), 4 vom: Apr., Seite 516-533 |
---|---|
Übergeordnetes Werk: |
volume:47 ; year:2011 ; number:4 ; month:04 ; pages:516-533 |
Links: |
---|
DOI / URN: |
10.1134/S0012266111040070 |
---|
Katalog-ID: |
OLC2027338721 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2027338721 | ||
003 | DE-627 | ||
005 | 20230503041200.0 | ||
007 | tu | ||
008 | 200819s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S0012266111040070 |2 doi | |
035 | |a (DE-627)OLC2027338721 | ||
035 | |a (DE-He213)S0012266111040070-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Bobodzhanova, M. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Asymptotic analysis of singularly perturbed integro-differential equations with zero operator in the differential part |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2011 | ||
520 | |a Abstract We consider an integro-differential system with identically zero operator in the differential part. We construct a regularized asymptotics of the solution of this system for two cases, one in which the integral operator contains an exponentially varying factor and the other in which it does not. On the basis of the resulting asymptotic expansion, we study the passage to the limit in the system and present conditions under which this passage is uniform on the entire range of the independent variable (including the boundary layer region). | ||
650 | 4 | |a Asymptotic Solution | |
650 | 4 | |a Asymptotic Analysis | |
650 | 4 | |a Limit Relation | |
650 | 4 | |a Singularly Perturb | |
650 | 4 | |a Moscow Power Engineer Institute | |
700 | 1 | |a Safonov, V. F. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Differential equations |d SP MAIK Nauka/Interperiodica, 1965 |g 47(2011), 4 vom: Apr., Seite 516-533 |w (DE-627)129604852 |w (DE-600)241983-X |w (DE-576)015098982 |x 0012-2661 |7 nnns |
773 | 1 | 8 | |g volume:47 |g year:2011 |g number:4 |g month:04 |g pages:516-533 |
856 | 4 | 1 | |u https://doi.org/10.1134/S0012266111040070 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.00 |q VZ |
951 | |a AR | ||
952 | |d 47 |j 2011 |e 4 |c 04 |h 516-533 |
author_variant |
m a b ma mab v f s vf vfs |
---|---|
matchkey_str |
article:00122661:2011----::smttcnlssfiglryetreitgoifrnilqainwtzroe |
hierarchy_sort_str |
2011 |
bklnumber |
31.00 |
publishDate |
2011 |
allfields |
10.1134/S0012266111040070 doi (DE-627)OLC2027338721 (DE-He213)S0012266111040070-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Bobodzhanova, M. A. verfasserin aut Asymptotic analysis of singularly perturbed integro-differential equations with zero operator in the differential part 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2011 Abstract We consider an integro-differential system with identically zero operator in the differential part. We construct a regularized asymptotics of the solution of this system for two cases, one in which the integral operator contains an exponentially varying factor and the other in which it does not. On the basis of the resulting asymptotic expansion, we study the passage to the limit in the system and present conditions under which this passage is uniform on the entire range of the independent variable (including the boundary layer region). Asymptotic Solution Asymptotic Analysis Limit Relation Singularly Perturb Moscow Power Engineer Institute Safonov, V. F. aut Enthalten in Differential equations SP MAIK Nauka/Interperiodica, 1965 47(2011), 4 vom: Apr., Seite 516-533 (DE-627)129604852 (DE-600)241983-X (DE-576)015098982 0012-2661 nnns volume:47 year:2011 number:4 month:04 pages:516-533 https://doi.org/10.1134/S0012266111040070 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 31.00 VZ AR 47 2011 4 04 516-533 |
spelling |
10.1134/S0012266111040070 doi (DE-627)OLC2027338721 (DE-He213)S0012266111040070-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Bobodzhanova, M. A. verfasserin aut Asymptotic analysis of singularly perturbed integro-differential equations with zero operator in the differential part 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2011 Abstract We consider an integro-differential system with identically zero operator in the differential part. We construct a regularized asymptotics of the solution of this system for two cases, one in which the integral operator contains an exponentially varying factor and the other in which it does not. On the basis of the resulting asymptotic expansion, we study the passage to the limit in the system and present conditions under which this passage is uniform on the entire range of the independent variable (including the boundary layer region). Asymptotic Solution Asymptotic Analysis Limit Relation Singularly Perturb Moscow Power Engineer Institute Safonov, V. F. aut Enthalten in Differential equations SP MAIK Nauka/Interperiodica, 1965 47(2011), 4 vom: Apr., Seite 516-533 (DE-627)129604852 (DE-600)241983-X (DE-576)015098982 0012-2661 nnns volume:47 year:2011 number:4 month:04 pages:516-533 https://doi.org/10.1134/S0012266111040070 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 31.00 VZ AR 47 2011 4 04 516-533 |
allfields_unstemmed |
10.1134/S0012266111040070 doi (DE-627)OLC2027338721 (DE-He213)S0012266111040070-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Bobodzhanova, M. A. verfasserin aut Asymptotic analysis of singularly perturbed integro-differential equations with zero operator in the differential part 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2011 Abstract We consider an integro-differential system with identically zero operator in the differential part. We construct a regularized asymptotics of the solution of this system for two cases, one in which the integral operator contains an exponentially varying factor and the other in which it does not. On the basis of the resulting asymptotic expansion, we study the passage to the limit in the system and present conditions under which this passage is uniform on the entire range of the independent variable (including the boundary layer region). Asymptotic Solution Asymptotic Analysis Limit Relation Singularly Perturb Moscow Power Engineer Institute Safonov, V. F. aut Enthalten in Differential equations SP MAIK Nauka/Interperiodica, 1965 47(2011), 4 vom: Apr., Seite 516-533 (DE-627)129604852 (DE-600)241983-X (DE-576)015098982 0012-2661 nnns volume:47 year:2011 number:4 month:04 pages:516-533 https://doi.org/10.1134/S0012266111040070 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 31.00 VZ AR 47 2011 4 04 516-533 |
allfieldsGer |
10.1134/S0012266111040070 doi (DE-627)OLC2027338721 (DE-He213)S0012266111040070-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Bobodzhanova, M. A. verfasserin aut Asymptotic analysis of singularly perturbed integro-differential equations with zero operator in the differential part 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2011 Abstract We consider an integro-differential system with identically zero operator in the differential part. We construct a regularized asymptotics of the solution of this system for two cases, one in which the integral operator contains an exponentially varying factor and the other in which it does not. On the basis of the resulting asymptotic expansion, we study the passage to the limit in the system and present conditions under which this passage is uniform on the entire range of the independent variable (including the boundary layer region). Asymptotic Solution Asymptotic Analysis Limit Relation Singularly Perturb Moscow Power Engineer Institute Safonov, V. F. aut Enthalten in Differential equations SP MAIK Nauka/Interperiodica, 1965 47(2011), 4 vom: Apr., Seite 516-533 (DE-627)129604852 (DE-600)241983-X (DE-576)015098982 0012-2661 nnns volume:47 year:2011 number:4 month:04 pages:516-533 https://doi.org/10.1134/S0012266111040070 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 31.00 VZ AR 47 2011 4 04 516-533 |
allfieldsSound |
10.1134/S0012266111040070 doi (DE-627)OLC2027338721 (DE-He213)S0012266111040070-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Bobodzhanova, M. A. verfasserin aut Asymptotic analysis of singularly perturbed integro-differential equations with zero operator in the differential part 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2011 Abstract We consider an integro-differential system with identically zero operator in the differential part. We construct a regularized asymptotics of the solution of this system for two cases, one in which the integral operator contains an exponentially varying factor and the other in which it does not. On the basis of the resulting asymptotic expansion, we study the passage to the limit in the system and present conditions under which this passage is uniform on the entire range of the independent variable (including the boundary layer region). Asymptotic Solution Asymptotic Analysis Limit Relation Singularly Perturb Moscow Power Engineer Institute Safonov, V. F. aut Enthalten in Differential equations SP MAIK Nauka/Interperiodica, 1965 47(2011), 4 vom: Apr., Seite 516-533 (DE-627)129604852 (DE-600)241983-X (DE-576)015098982 0012-2661 nnns volume:47 year:2011 number:4 month:04 pages:516-533 https://doi.org/10.1134/S0012266111040070 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 31.00 VZ AR 47 2011 4 04 516-533 |
language |
English |
source |
Enthalten in Differential equations 47(2011), 4 vom: Apr., Seite 516-533 volume:47 year:2011 number:4 month:04 pages:516-533 |
sourceStr |
Enthalten in Differential equations 47(2011), 4 vom: Apr., Seite 516-533 volume:47 year:2011 number:4 month:04 pages:516-533 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Asymptotic Solution Asymptotic Analysis Limit Relation Singularly Perturb Moscow Power Engineer Institute |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Differential equations |
authorswithroles_txt_mv |
Bobodzhanova, M. A. @@aut@@ Safonov, V. F. @@aut@@ |
publishDateDaySort_date |
2011-04-01T00:00:00Z |
hierarchy_top_id |
129604852 |
dewey-sort |
3510 |
id |
OLC2027338721 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2027338721</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503041200.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0012266111040070</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2027338721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0012266111040070-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bobodzhanova, M. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic analysis of singularly perturbed integro-differential equations with zero operator in the differential part</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider an integro-differential system with identically zero operator in the differential part. We construct a regularized asymptotics of the solution of this system for two cases, one in which the integral operator contains an exponentially varying factor and the other in which it does not. On the basis of the resulting asymptotic expansion, we study the passage to the limit in the system and present conditions under which this passage is uniform on the entire range of the independent variable (including the boundary layer region).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic Solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Limit Relation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singularly Perturb</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moscow Power Engineer Institute</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Safonov, V. F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Differential equations</subfield><subfield code="d">SP MAIK Nauka/Interperiodica, 1965</subfield><subfield code="g">47(2011), 4 vom: Apr., Seite 516-533</subfield><subfield code="w">(DE-627)129604852</subfield><subfield code="w">(DE-600)241983-X</subfield><subfield code="w">(DE-576)015098982</subfield><subfield code="x">0012-2661</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:4</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:516-533</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0012266111040070</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2011</subfield><subfield code="e">4</subfield><subfield code="c">04</subfield><subfield code="h">516-533</subfield></datafield></record></collection>
|
author |
Bobodzhanova, M. A. |
spellingShingle |
Bobodzhanova, M. A. ddc 510 ssgn 17,1 bkl 31.00 misc Asymptotic Solution misc Asymptotic Analysis misc Limit Relation misc Singularly Perturb misc Moscow Power Engineer Institute Asymptotic analysis of singularly perturbed integro-differential equations with zero operator in the differential part |
authorStr |
Bobodzhanova, M. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129604852 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0012-2661 |
topic_title |
510 VZ 17,1 ssgn 31.00 bkl Asymptotic analysis of singularly perturbed integro-differential equations with zero operator in the differential part Asymptotic Solution Asymptotic Analysis Limit Relation Singularly Perturb Moscow Power Engineer Institute |
topic |
ddc 510 ssgn 17,1 bkl 31.00 misc Asymptotic Solution misc Asymptotic Analysis misc Limit Relation misc Singularly Perturb misc Moscow Power Engineer Institute |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.00 misc Asymptotic Solution misc Asymptotic Analysis misc Limit Relation misc Singularly Perturb misc Moscow Power Engineer Institute |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.00 misc Asymptotic Solution misc Asymptotic Analysis misc Limit Relation misc Singularly Perturb misc Moscow Power Engineer Institute |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Differential equations |
hierarchy_parent_id |
129604852 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Differential equations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129604852 (DE-600)241983-X (DE-576)015098982 |
title |
Asymptotic analysis of singularly perturbed integro-differential equations with zero operator in the differential part |
ctrlnum |
(DE-627)OLC2027338721 (DE-He213)S0012266111040070-p |
title_full |
Asymptotic analysis of singularly perturbed integro-differential equations with zero operator in the differential part |
author_sort |
Bobodzhanova, M. A. |
journal |
Differential equations |
journalStr |
Differential equations |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
516 |
author_browse |
Bobodzhanova, M. A. Safonov, V. F. |
container_volume |
47 |
class |
510 VZ 17,1 ssgn 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Bobodzhanova, M. A. |
doi_str_mv |
10.1134/S0012266111040070 |
dewey-full |
510 |
title_sort |
asymptotic analysis of singularly perturbed integro-differential equations with zero operator in the differential part |
title_auth |
Asymptotic analysis of singularly perturbed integro-differential equations with zero operator in the differential part |
abstract |
Abstract We consider an integro-differential system with identically zero operator in the differential part. We construct a regularized asymptotics of the solution of this system for two cases, one in which the integral operator contains an exponentially varying factor and the other in which it does not. On the basis of the resulting asymptotic expansion, we study the passage to the limit in the system and present conditions under which this passage is uniform on the entire range of the independent variable (including the boundary layer region). © Pleiades Publishing, Ltd. 2011 |
abstractGer |
Abstract We consider an integro-differential system with identically zero operator in the differential part. We construct a regularized asymptotics of the solution of this system for two cases, one in which the integral operator contains an exponentially varying factor and the other in which it does not. On the basis of the resulting asymptotic expansion, we study the passage to the limit in the system and present conditions under which this passage is uniform on the entire range of the independent variable (including the boundary layer region). © Pleiades Publishing, Ltd. 2011 |
abstract_unstemmed |
Abstract We consider an integro-differential system with identically zero operator in the differential part. We construct a regularized asymptotics of the solution of this system for two cases, one in which the integral operator contains an exponentially varying factor and the other in which it does not. On the basis of the resulting asymptotic expansion, we study the passage to the limit in the system and present conditions under which this passage is uniform on the entire range of the independent variable (including the boundary layer region). © Pleiades Publishing, Ltd. 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Asymptotic analysis of singularly perturbed integro-differential equations with zero operator in the differential part |
url |
https://doi.org/10.1134/S0012266111040070 |
remote_bool |
false |
author2 |
Safonov, V. F. |
author2Str |
Safonov, V. F. |
ppnlink |
129604852 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S0012266111040070 |
up_date |
2024-07-03T14:56:11.516Z |
_version_ |
1803570193647009792 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2027338721</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503041200.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0012266111040070</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2027338721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0012266111040070-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bobodzhanova, M. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic analysis of singularly perturbed integro-differential equations with zero operator in the differential part</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider an integro-differential system with identically zero operator in the differential part. We construct a regularized asymptotics of the solution of this system for two cases, one in which the integral operator contains an exponentially varying factor and the other in which it does not. On the basis of the resulting asymptotic expansion, we study the passage to the limit in the system and present conditions under which this passage is uniform on the entire range of the independent variable (including the boundary layer region).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic Solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Limit Relation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Singularly Perturb</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moscow Power Engineer Institute</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Safonov, V. F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Differential equations</subfield><subfield code="d">SP MAIK Nauka/Interperiodica, 1965</subfield><subfield code="g">47(2011), 4 vom: Apr., Seite 516-533</subfield><subfield code="w">(DE-627)129604852</subfield><subfield code="w">(DE-600)241983-X</subfield><subfield code="w">(DE-576)015098982</subfield><subfield code="x">0012-2661</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:4</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:516-533</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0012266111040070</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield><subfield code="j">2011</subfield><subfield code="e">4</subfield><subfield code="c">04</subfield><subfield code="h">516-533</subfield></datafield></record></collection>
|
score |
7.4021845 |