Properties of the Lagrange multipliers in the Pontryagin maximum principle for optimal control problems with state constraints
Abstract We study the Pontryagin maximum principle for an optimal control problem with state constraints. We analyze the continuity of a vector function µ (which is one of the Lagrange multipliers corresponding to an extremal by virtue of the maximum principle) at the points where the extremal traje...
Ausführliche Beschreibung
Autor*in: |
Arutyunov, A. V. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Differential equations - SP MAIK Nauka/Interperiodica, 1965, 48(2012), 12 vom: Dez., Seite 1586-1595 |
---|---|
Übergeordnetes Werk: |
volume:48 ; year:2012 ; number:12 ; month:12 ; pages:1586-1595 |
Links: |
---|
DOI / URN: |
10.1134/S0012266112120051 |
---|
Katalog-ID: |
OLC2027341382 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2027341382 | ||
003 | DE-627 | ||
005 | 20230503041208.0 | ||
007 | tu | ||
008 | 200819s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S0012266112120051 |2 doi | |
035 | |a (DE-627)OLC2027341382 | ||
035 | |a (DE-He213)S0012266112120051-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Arutyunov, A. V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Properties of the Lagrange multipliers in the Pontryagin maximum principle for optimal control problems with state constraints |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2012 | ||
520 | |a Abstract We study the Pontryagin maximum principle for an optimal control problem with state constraints. We analyze the continuity of a vector function µ (which is one of the Lagrange multipliers corresponding to an extremal by virtue of the maximum principle) at the points where the extremal trajectory meets the boundary of the set given by the state constraints. We obtain sufficient conditions for the continuity of µ in terms of the smoothness of the extremal trajectory. | ||
650 | 4 | |a Lagrange Multiplier | |
650 | 4 | |a Maximum Principle | |
650 | 4 | |a Optimal Control Problem | |
650 | 4 | |a Vector Function | |
650 | 4 | |a State Constraint | |
773 | 0 | 8 | |i Enthalten in |t Differential equations |d SP MAIK Nauka/Interperiodica, 1965 |g 48(2012), 12 vom: Dez., Seite 1586-1595 |w (DE-627)129604852 |w (DE-600)241983-X |w (DE-576)015098982 |x 0012-2661 |7 nnns |
773 | 1 | 8 | |g volume:48 |g year:2012 |g number:12 |g month:12 |g pages:1586-1595 |
856 | 4 | 1 | |u https://doi.org/10.1134/S0012266112120051 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.00 |q VZ |
951 | |a AR | ||
952 | |d 48 |j 2012 |e 12 |c 12 |h 1586-1595 |
author_variant |
a v a av ava |
---|---|
matchkey_str |
article:00122661:2012----::rprisfhlgagmlilesnhpnraimxmmrnilfrpiacnr |
hierarchy_sort_str |
2012 |
bklnumber |
31.00 |
publishDate |
2012 |
allfields |
10.1134/S0012266112120051 doi (DE-627)OLC2027341382 (DE-He213)S0012266112120051-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Arutyunov, A. V. verfasserin aut Properties of the Lagrange multipliers in the Pontryagin maximum principle for optimal control problems with state constraints 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2012 Abstract We study the Pontryagin maximum principle for an optimal control problem with state constraints. We analyze the continuity of a vector function µ (which is one of the Lagrange multipliers corresponding to an extremal by virtue of the maximum principle) at the points where the extremal trajectory meets the boundary of the set given by the state constraints. We obtain sufficient conditions for the continuity of µ in terms of the smoothness of the extremal trajectory. Lagrange Multiplier Maximum Principle Optimal Control Problem Vector Function State Constraint Enthalten in Differential equations SP MAIK Nauka/Interperiodica, 1965 48(2012), 12 vom: Dez., Seite 1586-1595 (DE-627)129604852 (DE-600)241983-X (DE-576)015098982 0012-2661 nnns volume:48 year:2012 number:12 month:12 pages:1586-1595 https://doi.org/10.1134/S0012266112120051 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 31.00 VZ AR 48 2012 12 12 1586-1595 |
spelling |
10.1134/S0012266112120051 doi (DE-627)OLC2027341382 (DE-He213)S0012266112120051-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Arutyunov, A. V. verfasserin aut Properties of the Lagrange multipliers in the Pontryagin maximum principle for optimal control problems with state constraints 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2012 Abstract We study the Pontryagin maximum principle for an optimal control problem with state constraints. We analyze the continuity of a vector function µ (which is one of the Lagrange multipliers corresponding to an extremal by virtue of the maximum principle) at the points where the extremal trajectory meets the boundary of the set given by the state constraints. We obtain sufficient conditions for the continuity of µ in terms of the smoothness of the extremal trajectory. Lagrange Multiplier Maximum Principle Optimal Control Problem Vector Function State Constraint Enthalten in Differential equations SP MAIK Nauka/Interperiodica, 1965 48(2012), 12 vom: Dez., Seite 1586-1595 (DE-627)129604852 (DE-600)241983-X (DE-576)015098982 0012-2661 nnns volume:48 year:2012 number:12 month:12 pages:1586-1595 https://doi.org/10.1134/S0012266112120051 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 31.00 VZ AR 48 2012 12 12 1586-1595 |
allfields_unstemmed |
10.1134/S0012266112120051 doi (DE-627)OLC2027341382 (DE-He213)S0012266112120051-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Arutyunov, A. V. verfasserin aut Properties of the Lagrange multipliers in the Pontryagin maximum principle for optimal control problems with state constraints 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2012 Abstract We study the Pontryagin maximum principle for an optimal control problem with state constraints. We analyze the continuity of a vector function µ (which is one of the Lagrange multipliers corresponding to an extremal by virtue of the maximum principle) at the points where the extremal trajectory meets the boundary of the set given by the state constraints. We obtain sufficient conditions for the continuity of µ in terms of the smoothness of the extremal trajectory. Lagrange Multiplier Maximum Principle Optimal Control Problem Vector Function State Constraint Enthalten in Differential equations SP MAIK Nauka/Interperiodica, 1965 48(2012), 12 vom: Dez., Seite 1586-1595 (DE-627)129604852 (DE-600)241983-X (DE-576)015098982 0012-2661 nnns volume:48 year:2012 number:12 month:12 pages:1586-1595 https://doi.org/10.1134/S0012266112120051 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 31.00 VZ AR 48 2012 12 12 1586-1595 |
allfieldsGer |
10.1134/S0012266112120051 doi (DE-627)OLC2027341382 (DE-He213)S0012266112120051-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Arutyunov, A. V. verfasserin aut Properties of the Lagrange multipliers in the Pontryagin maximum principle for optimal control problems with state constraints 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2012 Abstract We study the Pontryagin maximum principle for an optimal control problem with state constraints. We analyze the continuity of a vector function µ (which is one of the Lagrange multipliers corresponding to an extremal by virtue of the maximum principle) at the points where the extremal trajectory meets the boundary of the set given by the state constraints. We obtain sufficient conditions for the continuity of µ in terms of the smoothness of the extremal trajectory. Lagrange Multiplier Maximum Principle Optimal Control Problem Vector Function State Constraint Enthalten in Differential equations SP MAIK Nauka/Interperiodica, 1965 48(2012), 12 vom: Dez., Seite 1586-1595 (DE-627)129604852 (DE-600)241983-X (DE-576)015098982 0012-2661 nnns volume:48 year:2012 number:12 month:12 pages:1586-1595 https://doi.org/10.1134/S0012266112120051 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 31.00 VZ AR 48 2012 12 12 1586-1595 |
allfieldsSound |
10.1134/S0012266112120051 doi (DE-627)OLC2027341382 (DE-He213)S0012266112120051-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Arutyunov, A. V. verfasserin aut Properties of the Lagrange multipliers in the Pontryagin maximum principle for optimal control problems with state constraints 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2012 Abstract We study the Pontryagin maximum principle for an optimal control problem with state constraints. We analyze the continuity of a vector function µ (which is one of the Lagrange multipliers corresponding to an extremal by virtue of the maximum principle) at the points where the extremal trajectory meets the boundary of the set given by the state constraints. We obtain sufficient conditions for the continuity of µ in terms of the smoothness of the extremal trajectory. Lagrange Multiplier Maximum Principle Optimal Control Problem Vector Function State Constraint Enthalten in Differential equations SP MAIK Nauka/Interperiodica, 1965 48(2012), 12 vom: Dez., Seite 1586-1595 (DE-627)129604852 (DE-600)241983-X (DE-576)015098982 0012-2661 nnns volume:48 year:2012 number:12 month:12 pages:1586-1595 https://doi.org/10.1134/S0012266112120051 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 31.00 VZ AR 48 2012 12 12 1586-1595 |
language |
English |
source |
Enthalten in Differential equations 48(2012), 12 vom: Dez., Seite 1586-1595 volume:48 year:2012 number:12 month:12 pages:1586-1595 |
sourceStr |
Enthalten in Differential equations 48(2012), 12 vom: Dez., Seite 1586-1595 volume:48 year:2012 number:12 month:12 pages:1586-1595 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Lagrange Multiplier Maximum Principle Optimal Control Problem Vector Function State Constraint |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Differential equations |
authorswithroles_txt_mv |
Arutyunov, A. V. @@aut@@ |
publishDateDaySort_date |
2012-12-01T00:00:00Z |
hierarchy_top_id |
129604852 |
dewey-sort |
3510 |
id |
OLC2027341382 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2027341382</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503041208.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0012266112120051</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2027341382</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0012266112120051-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arutyunov, A. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Properties of the Lagrange multipliers in the Pontryagin maximum principle for optimal control problems with state constraints</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study the Pontryagin maximum principle for an optimal control problem with state constraints. We analyze the continuity of a vector function µ (which is one of the Lagrange multipliers corresponding to an extremal by virtue of the maximum principle) at the points where the extremal trajectory meets the boundary of the set given by the state constraints. We obtain sufficient conditions for the continuity of µ in terms of the smoothness of the extremal trajectory.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lagrange Multiplier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximum Principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal Control Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">State Constraint</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Differential equations</subfield><subfield code="d">SP MAIK Nauka/Interperiodica, 1965</subfield><subfield code="g">48(2012), 12 vom: Dez., Seite 1586-1595</subfield><subfield code="w">(DE-627)129604852</subfield><subfield code="w">(DE-600)241983-X</subfield><subfield code="w">(DE-576)015098982</subfield><subfield code="x">0012-2661</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:12</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1586-1595</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0012266112120051</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2012</subfield><subfield code="e">12</subfield><subfield code="c">12</subfield><subfield code="h">1586-1595</subfield></datafield></record></collection>
|
author |
Arutyunov, A. V. |
spellingShingle |
Arutyunov, A. V. ddc 510 ssgn 17,1 bkl 31.00 misc Lagrange Multiplier misc Maximum Principle misc Optimal Control Problem misc Vector Function misc State Constraint Properties of the Lagrange multipliers in the Pontryagin maximum principle for optimal control problems with state constraints |
authorStr |
Arutyunov, A. V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129604852 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0012-2661 |
topic_title |
510 VZ 17,1 ssgn 31.00 bkl Properties of the Lagrange multipliers in the Pontryagin maximum principle for optimal control problems with state constraints Lagrange Multiplier Maximum Principle Optimal Control Problem Vector Function State Constraint |
topic |
ddc 510 ssgn 17,1 bkl 31.00 misc Lagrange Multiplier misc Maximum Principle misc Optimal Control Problem misc Vector Function misc State Constraint |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.00 misc Lagrange Multiplier misc Maximum Principle misc Optimal Control Problem misc Vector Function misc State Constraint |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.00 misc Lagrange Multiplier misc Maximum Principle misc Optimal Control Problem misc Vector Function misc State Constraint |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Differential equations |
hierarchy_parent_id |
129604852 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Differential equations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129604852 (DE-600)241983-X (DE-576)015098982 |
title |
Properties of the Lagrange multipliers in the Pontryagin maximum principle for optimal control problems with state constraints |
ctrlnum |
(DE-627)OLC2027341382 (DE-He213)S0012266112120051-p |
title_full |
Properties of the Lagrange multipliers in the Pontryagin maximum principle for optimal control problems with state constraints |
author_sort |
Arutyunov, A. V. |
journal |
Differential equations |
journalStr |
Differential equations |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
1586 |
author_browse |
Arutyunov, A. V. |
container_volume |
48 |
class |
510 VZ 17,1 ssgn 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Arutyunov, A. V. |
doi_str_mv |
10.1134/S0012266112120051 |
dewey-full |
510 |
title_sort |
properties of the lagrange multipliers in the pontryagin maximum principle for optimal control problems with state constraints |
title_auth |
Properties of the Lagrange multipliers in the Pontryagin maximum principle for optimal control problems with state constraints |
abstract |
Abstract We study the Pontryagin maximum principle for an optimal control problem with state constraints. We analyze the continuity of a vector function µ (which is one of the Lagrange multipliers corresponding to an extremal by virtue of the maximum principle) at the points where the extremal trajectory meets the boundary of the set given by the state constraints. We obtain sufficient conditions for the continuity of µ in terms of the smoothness of the extremal trajectory. © Pleiades Publishing, Ltd. 2012 |
abstractGer |
Abstract We study the Pontryagin maximum principle for an optimal control problem with state constraints. We analyze the continuity of a vector function µ (which is one of the Lagrange multipliers corresponding to an extremal by virtue of the maximum principle) at the points where the extremal trajectory meets the boundary of the set given by the state constraints. We obtain sufficient conditions for the continuity of µ in terms of the smoothness of the extremal trajectory. © Pleiades Publishing, Ltd. 2012 |
abstract_unstemmed |
Abstract We study the Pontryagin maximum principle for an optimal control problem with state constraints. We analyze the continuity of a vector function µ (which is one of the Lagrange multipliers corresponding to an extremal by virtue of the maximum principle) at the points where the extremal trajectory meets the boundary of the set given by the state constraints. We obtain sufficient conditions for the continuity of µ in terms of the smoothness of the extremal trajectory. © Pleiades Publishing, Ltd. 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 |
container_issue |
12 |
title_short |
Properties of the Lagrange multipliers in the Pontryagin maximum principle for optimal control problems with state constraints |
url |
https://doi.org/10.1134/S0012266112120051 |
remote_bool |
false |
ppnlink |
129604852 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S0012266112120051 |
up_date |
2024-07-03T14:56:42.992Z |
_version_ |
1803570226648842240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2027341382</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503041208.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0012266112120051</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2027341382</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0012266112120051-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arutyunov, A. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Properties of the Lagrange multipliers in the Pontryagin maximum principle for optimal control problems with state constraints</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study the Pontryagin maximum principle for an optimal control problem with state constraints. We analyze the continuity of a vector function µ (which is one of the Lagrange multipliers corresponding to an extremal by virtue of the maximum principle) at the points where the extremal trajectory meets the boundary of the set given by the state constraints. We obtain sufficient conditions for the continuity of µ in terms of the smoothness of the extremal trajectory.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lagrange Multiplier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximum Principle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal Control Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">State Constraint</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Differential equations</subfield><subfield code="d">SP MAIK Nauka/Interperiodica, 1965</subfield><subfield code="g">48(2012), 12 vom: Dez., Seite 1586-1595</subfield><subfield code="w">(DE-627)129604852</subfield><subfield code="w">(DE-600)241983-X</subfield><subfield code="w">(DE-576)015098982</subfield><subfield code="x">0012-2661</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:12</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1586-1595</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0012266112120051</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2012</subfield><subfield code="e">12</subfield><subfield code="c">12</subfield><subfield code="h">1586-1595</subfield></datafield></record></collection>
|
score |
7.4008837 |