On a new class of boundary value problems for the Sturm-Liouville operator
Abstract We consider the spectral problem generated by the Sturm-Liouville operator with complex-valued potential q(x) ∈ L2(0, π) and degenerate boundary conditions. We show that the set of potentials q(x) for which there exist associated functions of arbitrarily high order in the system of root fun...
Ausführliche Beschreibung
Autor*in: |
Makin, A. S. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Differential equations - SP MAIK Nauka/Interperiodica, 1965, 49(2013), 2 vom: Feb., Seite 262-266 |
---|---|
Übergeordnetes Werk: |
volume:49 ; year:2013 ; number:2 ; month:02 ; pages:262-266 |
Links: |
---|
DOI / URN: |
10.1134/S0012266113020146 |
---|
Katalog-ID: |
OLC2027341617 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2027341617 | ||
003 | DE-627 | ||
005 | 20230503041222.0 | ||
007 | tu | ||
008 | 200819s2013 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S0012266113020146 |2 doi | |
035 | |a (DE-627)OLC2027341617 | ||
035 | |a (DE-He213)S0012266113020146-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Makin, A. S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a On a new class of boundary value problems for the Sturm-Liouville operator |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2013 | ||
520 | |a Abstract We consider the spectral problem generated by the Sturm-Liouville operator with complex-valued potential q(x) ∈ L2(0, π) and degenerate boundary conditions. We show that the set of potentials q(x) for which there exist associated functions of arbitrarily high order in the system of root functions is everywhere dense in L1(0, π). | ||
650 | 4 | |a Dirichlet Problem | |
650 | 4 | |a Root Function | |
650 | 4 | |a Liouville Operator | |
650 | 4 | |a Associate Function | |
650 | 4 | |a Simple Spectrum | |
773 | 0 | 8 | |i Enthalten in |t Differential equations |d SP MAIK Nauka/Interperiodica, 1965 |g 49(2013), 2 vom: Feb., Seite 262-266 |w (DE-627)129604852 |w (DE-600)241983-X |w (DE-576)015098982 |x 0012-2661 |7 nnns |
773 | 1 | 8 | |g volume:49 |g year:2013 |g number:2 |g month:02 |g pages:262-266 |
856 | 4 | 1 | |u https://doi.org/10.1134/S0012266113020146 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.00 |q VZ |
951 | |a AR | ||
952 | |d 49 |j 2013 |e 2 |c 02 |h 262-266 |
author_variant |
a s m as asm |
---|---|
matchkey_str |
article:00122661:2013----::nnwlsobudrvlerbesotetr |
hierarchy_sort_str |
2013 |
bklnumber |
31.00 |
publishDate |
2013 |
allfields |
10.1134/S0012266113020146 doi (DE-627)OLC2027341617 (DE-He213)S0012266113020146-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Makin, A. S. verfasserin aut On a new class of boundary value problems for the Sturm-Liouville operator 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2013 Abstract We consider the spectral problem generated by the Sturm-Liouville operator with complex-valued potential q(x) ∈ L2(0, π) and degenerate boundary conditions. We show that the set of potentials q(x) for which there exist associated functions of arbitrarily high order in the system of root functions is everywhere dense in L1(0, π). Dirichlet Problem Root Function Liouville Operator Associate Function Simple Spectrum Enthalten in Differential equations SP MAIK Nauka/Interperiodica, 1965 49(2013), 2 vom: Feb., Seite 262-266 (DE-627)129604852 (DE-600)241983-X (DE-576)015098982 0012-2661 nnns volume:49 year:2013 number:2 month:02 pages:262-266 https://doi.org/10.1134/S0012266113020146 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 31.00 VZ AR 49 2013 2 02 262-266 |
spelling |
10.1134/S0012266113020146 doi (DE-627)OLC2027341617 (DE-He213)S0012266113020146-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Makin, A. S. verfasserin aut On a new class of boundary value problems for the Sturm-Liouville operator 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2013 Abstract We consider the spectral problem generated by the Sturm-Liouville operator with complex-valued potential q(x) ∈ L2(0, π) and degenerate boundary conditions. We show that the set of potentials q(x) for which there exist associated functions of arbitrarily high order in the system of root functions is everywhere dense in L1(0, π). Dirichlet Problem Root Function Liouville Operator Associate Function Simple Spectrum Enthalten in Differential equations SP MAIK Nauka/Interperiodica, 1965 49(2013), 2 vom: Feb., Seite 262-266 (DE-627)129604852 (DE-600)241983-X (DE-576)015098982 0012-2661 nnns volume:49 year:2013 number:2 month:02 pages:262-266 https://doi.org/10.1134/S0012266113020146 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 31.00 VZ AR 49 2013 2 02 262-266 |
allfields_unstemmed |
10.1134/S0012266113020146 doi (DE-627)OLC2027341617 (DE-He213)S0012266113020146-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Makin, A. S. verfasserin aut On a new class of boundary value problems for the Sturm-Liouville operator 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2013 Abstract We consider the spectral problem generated by the Sturm-Liouville operator with complex-valued potential q(x) ∈ L2(0, π) and degenerate boundary conditions. We show that the set of potentials q(x) for which there exist associated functions of arbitrarily high order in the system of root functions is everywhere dense in L1(0, π). Dirichlet Problem Root Function Liouville Operator Associate Function Simple Spectrum Enthalten in Differential equations SP MAIK Nauka/Interperiodica, 1965 49(2013), 2 vom: Feb., Seite 262-266 (DE-627)129604852 (DE-600)241983-X (DE-576)015098982 0012-2661 nnns volume:49 year:2013 number:2 month:02 pages:262-266 https://doi.org/10.1134/S0012266113020146 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 31.00 VZ AR 49 2013 2 02 262-266 |
allfieldsGer |
10.1134/S0012266113020146 doi (DE-627)OLC2027341617 (DE-He213)S0012266113020146-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Makin, A. S. verfasserin aut On a new class of boundary value problems for the Sturm-Liouville operator 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2013 Abstract We consider the spectral problem generated by the Sturm-Liouville operator with complex-valued potential q(x) ∈ L2(0, π) and degenerate boundary conditions. We show that the set of potentials q(x) for which there exist associated functions of arbitrarily high order in the system of root functions is everywhere dense in L1(0, π). Dirichlet Problem Root Function Liouville Operator Associate Function Simple Spectrum Enthalten in Differential equations SP MAIK Nauka/Interperiodica, 1965 49(2013), 2 vom: Feb., Seite 262-266 (DE-627)129604852 (DE-600)241983-X (DE-576)015098982 0012-2661 nnns volume:49 year:2013 number:2 month:02 pages:262-266 https://doi.org/10.1134/S0012266113020146 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 31.00 VZ AR 49 2013 2 02 262-266 |
allfieldsSound |
10.1134/S0012266113020146 doi (DE-627)OLC2027341617 (DE-He213)S0012266113020146-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Makin, A. S. verfasserin aut On a new class of boundary value problems for the Sturm-Liouville operator 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2013 Abstract We consider the spectral problem generated by the Sturm-Liouville operator with complex-valued potential q(x) ∈ L2(0, π) and degenerate boundary conditions. We show that the set of potentials q(x) for which there exist associated functions of arbitrarily high order in the system of root functions is everywhere dense in L1(0, π). Dirichlet Problem Root Function Liouville Operator Associate Function Simple Spectrum Enthalten in Differential equations SP MAIK Nauka/Interperiodica, 1965 49(2013), 2 vom: Feb., Seite 262-266 (DE-627)129604852 (DE-600)241983-X (DE-576)015098982 0012-2661 nnns volume:49 year:2013 number:2 month:02 pages:262-266 https://doi.org/10.1134/S0012266113020146 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 31.00 VZ AR 49 2013 2 02 262-266 |
language |
English |
source |
Enthalten in Differential equations 49(2013), 2 vom: Feb., Seite 262-266 volume:49 year:2013 number:2 month:02 pages:262-266 |
sourceStr |
Enthalten in Differential equations 49(2013), 2 vom: Feb., Seite 262-266 volume:49 year:2013 number:2 month:02 pages:262-266 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Dirichlet Problem Root Function Liouville Operator Associate Function Simple Spectrum |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Differential equations |
authorswithroles_txt_mv |
Makin, A. S. @@aut@@ |
publishDateDaySort_date |
2013-02-01T00:00:00Z |
hierarchy_top_id |
129604852 |
dewey-sort |
3510 |
id |
OLC2027341617 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2027341617</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503041222.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0012266113020146</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2027341617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0012266113020146-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Makin, A. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On a new class of boundary value problems for the Sturm-Liouville operator</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider the spectral problem generated by the Sturm-Liouville operator with complex-valued potential q(x) ∈ L2(0, π) and degenerate boundary conditions. We show that the set of potentials q(x) for which there exist associated functions of arbitrarily high order in the system of root functions is everywhere dense in L1(0, π).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dirichlet Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Root Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liouville Operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Associate Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simple Spectrum</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Differential equations</subfield><subfield code="d">SP MAIK Nauka/Interperiodica, 1965</subfield><subfield code="g">49(2013), 2 vom: Feb., Seite 262-266</subfield><subfield code="w">(DE-627)129604852</subfield><subfield code="w">(DE-600)241983-X</subfield><subfield code="w">(DE-576)015098982</subfield><subfield code="x">0012-2661</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:2</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:262-266</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0012266113020146</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2013</subfield><subfield code="e">2</subfield><subfield code="c">02</subfield><subfield code="h">262-266</subfield></datafield></record></collection>
|
author |
Makin, A. S. |
spellingShingle |
Makin, A. S. ddc 510 ssgn 17,1 bkl 31.00 misc Dirichlet Problem misc Root Function misc Liouville Operator misc Associate Function misc Simple Spectrum On a new class of boundary value problems for the Sturm-Liouville operator |
authorStr |
Makin, A. S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129604852 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0012-2661 |
topic_title |
510 VZ 17,1 ssgn 31.00 bkl On a new class of boundary value problems for the Sturm-Liouville operator Dirichlet Problem Root Function Liouville Operator Associate Function Simple Spectrum |
topic |
ddc 510 ssgn 17,1 bkl 31.00 misc Dirichlet Problem misc Root Function misc Liouville Operator misc Associate Function misc Simple Spectrum |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.00 misc Dirichlet Problem misc Root Function misc Liouville Operator misc Associate Function misc Simple Spectrum |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.00 misc Dirichlet Problem misc Root Function misc Liouville Operator misc Associate Function misc Simple Spectrum |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Differential equations |
hierarchy_parent_id |
129604852 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Differential equations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129604852 (DE-600)241983-X (DE-576)015098982 |
title |
On a new class of boundary value problems for the Sturm-Liouville operator |
ctrlnum |
(DE-627)OLC2027341617 (DE-He213)S0012266113020146-p |
title_full |
On a new class of boundary value problems for the Sturm-Liouville operator |
author_sort |
Makin, A. S. |
journal |
Differential equations |
journalStr |
Differential equations |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
262 |
author_browse |
Makin, A. S. |
container_volume |
49 |
class |
510 VZ 17,1 ssgn 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Makin, A. S. |
doi_str_mv |
10.1134/S0012266113020146 |
dewey-full |
510 |
title_sort |
on a new class of boundary value problems for the sturm-liouville operator |
title_auth |
On a new class of boundary value problems for the Sturm-Liouville operator |
abstract |
Abstract We consider the spectral problem generated by the Sturm-Liouville operator with complex-valued potential q(x) ∈ L2(0, π) and degenerate boundary conditions. We show that the set of potentials q(x) for which there exist associated functions of arbitrarily high order in the system of root functions is everywhere dense in L1(0, π). © Pleiades Publishing, Ltd. 2013 |
abstractGer |
Abstract We consider the spectral problem generated by the Sturm-Liouville operator with complex-valued potential q(x) ∈ L2(0, π) and degenerate boundary conditions. We show that the set of potentials q(x) for which there exist associated functions of arbitrarily high order in the system of root functions is everywhere dense in L1(0, π). © Pleiades Publishing, Ltd. 2013 |
abstract_unstemmed |
Abstract We consider the spectral problem generated by the Sturm-Liouville operator with complex-valued potential q(x) ∈ L2(0, π) and degenerate boundary conditions. We show that the set of potentials q(x) for which there exist associated functions of arbitrarily high order in the system of root functions is everywhere dense in L1(0, π). © Pleiades Publishing, Ltd. 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4700 |
container_issue |
2 |
title_short |
On a new class of boundary value problems for the Sturm-Liouville operator |
url |
https://doi.org/10.1134/S0012266113020146 |
remote_bool |
false |
ppnlink |
129604852 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S0012266113020146 |
up_date |
2024-07-03T14:56:45.629Z |
_version_ |
1803570229422325760 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2027341617</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503041222.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0012266113020146</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2027341617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0012266113020146-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Makin, A. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On a new class of boundary value problems for the Sturm-Liouville operator</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider the spectral problem generated by the Sturm-Liouville operator with complex-valued potential q(x) ∈ L2(0, π) and degenerate boundary conditions. We show that the set of potentials q(x) for which there exist associated functions of arbitrarily high order in the system of root functions is everywhere dense in L1(0, π).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dirichlet Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Root Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liouville Operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Associate Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simple Spectrum</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Differential equations</subfield><subfield code="d">SP MAIK Nauka/Interperiodica, 1965</subfield><subfield code="g">49(2013), 2 vom: Feb., Seite 262-266</subfield><subfield code="w">(DE-627)129604852</subfield><subfield code="w">(DE-600)241983-X</subfield><subfield code="w">(DE-576)015098982</subfield><subfield code="x">0012-2661</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:2</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:262-266</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0012266113020146</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2013</subfield><subfield code="e">2</subfield><subfield code="c">02</subfield><subfield code="h">262-266</subfield></datafield></record></collection>
|
score |
7.3988447 |