Period relations for hyperelliptic riemann surfaces
Autor*in: |
Farkas, Hershel M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1971 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Israel journal of mathematics - Jerusalem : The Hebrew Univ. Magnes Press, 1963, 10(1971), 3 vom: Sept., Seite 289-301 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:1971 ; number:3 ; month:09 ; pages:289-301 |
Links: |
---|
DOI / URN: |
10.1007/BF02771646 |
---|
Katalog-ID: |
OLC2028807385 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2028807385 | ||
003 | DE-627 | ||
005 | 20230408193645.0 | ||
007 | tu | ||
008 | 200820s1971 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02771646 |2 doi | |
035 | |a (DE-627)OLC2028807385 | ||
035 | |a (DE-He213)BF02771646-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q AVZ |
100 | 1 | |a Farkas, Hershel M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Period relations for hyperelliptic riemann surfaces |
264 | 1 | |c 1971 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
650 | 4 | |a Riemann Surface |7 (dpeaa)DE-He213 | |
650 | 4 | |a Meromorphic Function |7 (dpeaa)DE-He213 | |
650 | 4 | |a Theta Function |7 (dpeaa)DE-He213 | |
650 | 4 | |a Compact Riemann Surface |7 (dpeaa)DE-He213 | |
650 | 4 | |a Double Pole |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t Israel journal of mathematics |d Jerusalem : The Hebrew Univ. Magnes Press, 1963 |g 10(1971), 3 vom: Sept., Seite 289-301 |w (DE-627)129552283 |w (DE-600)219689-X |w (DE-576)015007081 |x 0021-2172 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:1971 |g number:3 |g month:09 |g pages:289-301 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02771646 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-JFK | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4193 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4316 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4325 | ||
951 | |a AR | ||
952 | |d 10 |j 1971 |e 3 |c 09 |h 289-301 |
author_variant |
h m f hm hmf |
---|---|
matchkey_str |
article:00212172:1971----::eideainfryeelpir |
hierarchy_sort_str |
1971 |
publishDate |
1971 |
allfields |
10.1007/BF02771646 doi (DE-627)OLC2028807385 (DE-He213)BF02771646-p DE-627 ger DE-627 rakwb eng 510 AVZ Farkas, Hershel M. verfasserin aut Period relations for hyperelliptic riemann surfaces 1971 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Riemann Surface (dpeaa)DE-He213 Meromorphic Function (dpeaa)DE-He213 Theta Function (dpeaa)DE-He213 Compact Riemann Surface (dpeaa)DE-He213 Double Pole (dpeaa)DE-He213 Enthalten in Israel journal of mathematics Jerusalem : The Hebrew Univ. Magnes Press, 1963 10(1971), 3 vom: Sept., Seite 289-301 (DE-627)129552283 (DE-600)219689-X (DE-576)015007081 0021-2172 nnns volume:10 year:1971 number:3 month:09 pages:289-301 https://doi.org/10.1007/BF02771646 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-JFK GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 AR 10 1971 3 09 289-301 |
spelling |
10.1007/BF02771646 doi (DE-627)OLC2028807385 (DE-He213)BF02771646-p DE-627 ger DE-627 rakwb eng 510 AVZ Farkas, Hershel M. verfasserin aut Period relations for hyperelliptic riemann surfaces 1971 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Riemann Surface (dpeaa)DE-He213 Meromorphic Function (dpeaa)DE-He213 Theta Function (dpeaa)DE-He213 Compact Riemann Surface (dpeaa)DE-He213 Double Pole (dpeaa)DE-He213 Enthalten in Israel journal of mathematics Jerusalem : The Hebrew Univ. Magnes Press, 1963 10(1971), 3 vom: Sept., Seite 289-301 (DE-627)129552283 (DE-600)219689-X (DE-576)015007081 0021-2172 nnns volume:10 year:1971 number:3 month:09 pages:289-301 https://doi.org/10.1007/BF02771646 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-JFK GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 AR 10 1971 3 09 289-301 |
allfields_unstemmed |
10.1007/BF02771646 doi (DE-627)OLC2028807385 (DE-He213)BF02771646-p DE-627 ger DE-627 rakwb eng 510 AVZ Farkas, Hershel M. verfasserin aut Period relations for hyperelliptic riemann surfaces 1971 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Riemann Surface (dpeaa)DE-He213 Meromorphic Function (dpeaa)DE-He213 Theta Function (dpeaa)DE-He213 Compact Riemann Surface (dpeaa)DE-He213 Double Pole (dpeaa)DE-He213 Enthalten in Israel journal of mathematics Jerusalem : The Hebrew Univ. Magnes Press, 1963 10(1971), 3 vom: Sept., Seite 289-301 (DE-627)129552283 (DE-600)219689-X (DE-576)015007081 0021-2172 nnns volume:10 year:1971 number:3 month:09 pages:289-301 https://doi.org/10.1007/BF02771646 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-JFK GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 AR 10 1971 3 09 289-301 |
allfieldsGer |
10.1007/BF02771646 doi (DE-627)OLC2028807385 (DE-He213)BF02771646-p DE-627 ger DE-627 rakwb eng 510 AVZ Farkas, Hershel M. verfasserin aut Period relations for hyperelliptic riemann surfaces 1971 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Riemann Surface (dpeaa)DE-He213 Meromorphic Function (dpeaa)DE-He213 Theta Function (dpeaa)DE-He213 Compact Riemann Surface (dpeaa)DE-He213 Double Pole (dpeaa)DE-He213 Enthalten in Israel journal of mathematics Jerusalem : The Hebrew Univ. Magnes Press, 1963 10(1971), 3 vom: Sept., Seite 289-301 (DE-627)129552283 (DE-600)219689-X (DE-576)015007081 0021-2172 nnns volume:10 year:1971 number:3 month:09 pages:289-301 https://doi.org/10.1007/BF02771646 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-JFK GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 AR 10 1971 3 09 289-301 |
allfieldsSound |
10.1007/BF02771646 doi (DE-627)OLC2028807385 (DE-He213)BF02771646-p DE-627 ger DE-627 rakwb eng 510 AVZ Farkas, Hershel M. verfasserin aut Period relations for hyperelliptic riemann surfaces 1971 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Riemann Surface (dpeaa)DE-He213 Meromorphic Function (dpeaa)DE-He213 Theta Function (dpeaa)DE-He213 Compact Riemann Surface (dpeaa)DE-He213 Double Pole (dpeaa)DE-He213 Enthalten in Israel journal of mathematics Jerusalem : The Hebrew Univ. Magnes Press, 1963 10(1971), 3 vom: Sept., Seite 289-301 (DE-627)129552283 (DE-600)219689-X (DE-576)015007081 0021-2172 nnns volume:10 year:1971 number:3 month:09 pages:289-301 https://doi.org/10.1007/BF02771646 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-JFK GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 AR 10 1971 3 09 289-301 |
language |
English |
source |
Enthalten in Israel journal of mathematics 10(1971), 3 vom: Sept., Seite 289-301 volume:10 year:1971 number:3 month:09 pages:289-301 |
sourceStr |
Enthalten in Israel journal of mathematics 10(1971), 3 vom: Sept., Seite 289-301 volume:10 year:1971 number:3 month:09 pages:289-301 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Riemann Surface Meromorphic Function Theta Function Compact Riemann Surface Double Pole |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Israel journal of mathematics |
authorswithroles_txt_mv |
Farkas, Hershel M. @@aut@@ |
publishDateDaySort_date |
1971-09-01T00:00:00Z |
hierarchy_top_id |
129552283 |
dewey-sort |
3510 |
id |
OLC2028807385 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2028807385</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230408193645.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1971 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02771646</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2028807385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02771646-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Farkas, Hershel M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Period relations for hyperelliptic riemann surfaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1971</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann Surface</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meromorphic Function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theta Function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compact Riemann Surface</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Double Pole</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Israel journal of mathematics</subfield><subfield code="d">Jerusalem : The Hebrew Univ. Magnes Press, 1963</subfield><subfield code="g">10(1971), 3 vom: Sept., Seite 289-301</subfield><subfield code="w">(DE-627)129552283</subfield><subfield code="w">(DE-600)219689-X</subfield><subfield code="w">(DE-576)015007081</subfield><subfield code="x">0021-2172</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:1971</subfield><subfield code="g">number:3</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:289-301</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02771646</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-JFK</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">1971</subfield><subfield code="e">3</subfield><subfield code="c">09</subfield><subfield code="h">289-301</subfield></datafield></record></collection>
|
author |
Farkas, Hershel M. |
spellingShingle |
Farkas, Hershel M. ddc 510 misc Riemann Surface misc Meromorphic Function misc Theta Function misc Compact Riemann Surface misc Double Pole Period relations for hyperelliptic riemann surfaces |
authorStr |
Farkas, Hershel M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129552283 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0021-2172 |
topic_title |
510 AVZ Period relations for hyperelliptic riemann surfaces Riemann Surface (dpeaa)DE-He213 Meromorphic Function (dpeaa)DE-He213 Theta Function (dpeaa)DE-He213 Compact Riemann Surface (dpeaa)DE-He213 Double Pole (dpeaa)DE-He213 |
topic |
ddc 510 misc Riemann Surface misc Meromorphic Function misc Theta Function misc Compact Riemann Surface misc Double Pole |
topic_unstemmed |
ddc 510 misc Riemann Surface misc Meromorphic Function misc Theta Function misc Compact Riemann Surface misc Double Pole |
topic_browse |
ddc 510 misc Riemann Surface misc Meromorphic Function misc Theta Function misc Compact Riemann Surface misc Double Pole |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Israel journal of mathematics |
hierarchy_parent_id |
129552283 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Israel journal of mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129552283 (DE-600)219689-X (DE-576)015007081 |
title |
Period relations for hyperelliptic riemann surfaces |
ctrlnum |
(DE-627)OLC2028807385 (DE-He213)BF02771646-p |
title_full |
Period relations for hyperelliptic riemann surfaces |
author_sort |
Farkas, Hershel M. |
journal |
Israel journal of mathematics |
journalStr |
Israel journal of mathematics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1971 |
contenttype_str_mv |
txt |
container_start_page |
289 |
author_browse |
Farkas, Hershel M. |
container_volume |
10 |
class |
510 AVZ |
format_se |
Aufsätze |
author-letter |
Farkas, Hershel M. |
doi_str_mv |
10.1007/BF02771646 |
dewey-full |
510 |
title_sort |
period relations for hyperelliptic riemann surfaces |
title_auth |
Period relations for hyperelliptic riemann surfaces |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-JFK GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2002 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2012 GBV_ILN_2020 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4316 GBV_ILN_4318 GBV_ILN_4323 GBV_ILN_4325 |
container_issue |
3 |
title_short |
Period relations for hyperelliptic riemann surfaces |
url |
https://doi.org/10.1007/BF02771646 |
remote_bool |
false |
ppnlink |
129552283 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02771646 |
up_date |
2024-07-03T20:32:02.536Z |
_version_ |
1803591323526103041 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2028807385</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230408193645.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1971 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02771646</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2028807385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02771646-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Farkas, Hershel M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Period relations for hyperelliptic riemann surfaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1971</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann Surface</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meromorphic Function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theta Function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compact Riemann Surface</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Double Pole</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Israel journal of mathematics</subfield><subfield code="d">Jerusalem : The Hebrew Univ. Magnes Press, 1963</subfield><subfield code="g">10(1971), 3 vom: Sept., Seite 289-301</subfield><subfield code="w">(DE-627)129552283</subfield><subfield code="w">(DE-600)219689-X</subfield><subfield code="w">(DE-576)015007081</subfield><subfield code="x">0021-2172</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:1971</subfield><subfield code="g">number:3</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:289-301</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02771646</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-JFK</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">1971</subfield><subfield code="e">3</subfield><subfield code="c">09</subfield><subfield code="h">289-301</subfield></datafield></record></collection>
|
score |
7.401703 |