Multivariate data analysis applied to the definition of two Catalan viticultural regions I. Cluster analysis
Summary Five multivariate data analysis methods, namely principal components analysis, non-linear mapping, hierarchical clustering, minimal spanning tree and mode analysis, were used to analyse the natural structure of red wines from Tarragona (Catalonia, Spain). Seventeen parameters were analysed f...
Ausführliche Beschreibung
Autor*in: |
Larrechi, M. Soledad [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1987 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 1987 |
---|
Übergeordnetes Werk: |
Enthalten in: Zeitschrift für Lebensmittel-Untersuchung und -Forschung - Springer-Verlag, 1943, 185(1987), 3 vom: Sept., Seite 181-184 |
---|---|
Übergeordnetes Werk: |
volume:185 ; year:1987 ; number:3 ; month:09 ; pages:181-184 |
Links: |
---|
DOI / URN: |
10.1007/BF01042043 |
---|
Katalog-ID: |
OLC202993478X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC202993478X | ||
003 | DE-627 | ||
005 | 20230323191239.0 | ||
007 | tu | ||
008 | 200819s1987 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01042043 |2 doi | |
035 | |a (DE-627)OLC202993478X | ||
035 | |a (DE-He213)BF01042043-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |a 640 |q VZ |
100 | 1 | |a Larrechi, M. Soledad |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multivariate data analysis applied to the definition of two Catalan viticultural regions I. Cluster analysis |
264 | 1 | |c 1987 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 1987 | ||
520 | |a Summary Five multivariate data analysis methods, namely principal components analysis, non-linear mapping, hierarchical clustering, minimal spanning tree and mode analysis, were used to analyse the natural structure of red wines from Tarragona (Catalonia, Spain). Seventeen parameters were analysed for each sample to determine the multi-dimensional spectrum in which the wines are studied. In spite of the homogeneity of the wine samples which resulted from the similarity of the edaphic, varietal factors as well as the cultural conditions of the producing areas, two different clusters can be distinguished on the basis of all the methods used. The groups of wine samples obtained coincide with two viticultural zones that differ with regard to climate and geographical conditions. Therefore, a natural distinction can bei made between the wines produced in each adjacent zone, forming the basis for future differentiation according to brand name. | ||
650 | 4 | |a Span Tree | |
650 | 4 | |a Minimal Span Tree | |
650 | 4 | |a Wine Sample | |
650 | 4 | |a Data Analysis Method | |
650 | 4 | |a Multivariate Data Analysis | |
700 | 1 | |a Rius, F. Xavier |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Zeitschrift für Lebensmittel-Untersuchung und -Forschung |d Springer-Verlag, 1943 |g 185(1987), 3 vom: Sept., Seite 181-184 |w (DE-627)12947407X |w (DE-600)203000-7 |w (DE-576)01485192X |x 0044-3026 |7 nnns |
773 | 1 | 8 | |g volume:185 |g year:1987 |g number:3 |g month:09 |g pages:181-184 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01042043 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_183 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2066 | ||
912 | |a GBV_ILN_2360 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4193 | ||
912 | |a GBV_ILN_4219 | ||
912 | |a GBV_ILN_4247 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4328 | ||
951 | |a AR | ||
952 | |d 185 |j 1987 |e 3 |c 09 |h 181-184 |
author_variant |
m s l ms msl f x r fx fxr |
---|---|
matchkey_str |
article:00443026:1987----::utvraeaanlsspletteeiiinfwctlniiutr |
hierarchy_sort_str |
1987 |
publishDate |
1987 |
allfields |
10.1007/BF01042043 doi (DE-627)OLC202993478X (DE-He213)BF01042043-p DE-627 ger DE-627 rakwb eng 630 640 VZ Larrechi, M. Soledad verfasserin aut Multivariate data analysis applied to the definition of two Catalan viticultural regions I. Cluster analysis 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1987 Summary Five multivariate data analysis methods, namely principal components analysis, non-linear mapping, hierarchical clustering, minimal spanning tree and mode analysis, were used to analyse the natural structure of red wines from Tarragona (Catalonia, Spain). Seventeen parameters were analysed for each sample to determine the multi-dimensional spectrum in which the wines are studied. In spite of the homogeneity of the wine samples which resulted from the similarity of the edaphic, varietal factors as well as the cultural conditions of the producing areas, two different clusters can be distinguished on the basis of all the methods used. The groups of wine samples obtained coincide with two viticultural zones that differ with regard to climate and geographical conditions. Therefore, a natural distinction can bei made between the wines produced in each adjacent zone, forming the basis for future differentiation according to brand name. Span Tree Minimal Span Tree Wine Sample Data Analysis Method Multivariate Data Analysis Rius, F. Xavier aut Enthalten in Zeitschrift für Lebensmittel-Untersuchung und -Forschung Springer-Verlag, 1943 185(1987), 3 vom: Sept., Seite 181-184 (DE-627)12947407X (DE-600)203000-7 (DE-576)01485192X 0044-3026 nnns volume:185 year:1987 number:3 month:09 pages:181-184 https://doi.org/10.1007/BF01042043 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OPC-FOR GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_183 GBV_ILN_252 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2066 GBV_ILN_2360 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4193 GBV_ILN_4219 GBV_ILN_4247 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4319 GBV_ILN_4328 AR 185 1987 3 09 181-184 |
spelling |
10.1007/BF01042043 doi (DE-627)OLC202993478X (DE-He213)BF01042043-p DE-627 ger DE-627 rakwb eng 630 640 VZ Larrechi, M. Soledad verfasserin aut Multivariate data analysis applied to the definition of two Catalan viticultural regions I. Cluster analysis 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1987 Summary Five multivariate data analysis methods, namely principal components analysis, non-linear mapping, hierarchical clustering, minimal spanning tree and mode analysis, were used to analyse the natural structure of red wines from Tarragona (Catalonia, Spain). Seventeen parameters were analysed for each sample to determine the multi-dimensional spectrum in which the wines are studied. In spite of the homogeneity of the wine samples which resulted from the similarity of the edaphic, varietal factors as well as the cultural conditions of the producing areas, two different clusters can be distinguished on the basis of all the methods used. The groups of wine samples obtained coincide with two viticultural zones that differ with regard to climate and geographical conditions. Therefore, a natural distinction can bei made between the wines produced in each adjacent zone, forming the basis for future differentiation according to brand name. Span Tree Minimal Span Tree Wine Sample Data Analysis Method Multivariate Data Analysis Rius, F. Xavier aut Enthalten in Zeitschrift für Lebensmittel-Untersuchung und -Forschung Springer-Verlag, 1943 185(1987), 3 vom: Sept., Seite 181-184 (DE-627)12947407X (DE-600)203000-7 (DE-576)01485192X 0044-3026 nnns volume:185 year:1987 number:3 month:09 pages:181-184 https://doi.org/10.1007/BF01042043 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OPC-FOR GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_183 GBV_ILN_252 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2066 GBV_ILN_2360 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4193 GBV_ILN_4219 GBV_ILN_4247 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4319 GBV_ILN_4328 AR 185 1987 3 09 181-184 |
allfields_unstemmed |
10.1007/BF01042043 doi (DE-627)OLC202993478X (DE-He213)BF01042043-p DE-627 ger DE-627 rakwb eng 630 640 VZ Larrechi, M. Soledad verfasserin aut Multivariate data analysis applied to the definition of two Catalan viticultural regions I. Cluster analysis 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1987 Summary Five multivariate data analysis methods, namely principal components analysis, non-linear mapping, hierarchical clustering, minimal spanning tree and mode analysis, were used to analyse the natural structure of red wines from Tarragona (Catalonia, Spain). Seventeen parameters were analysed for each sample to determine the multi-dimensional spectrum in which the wines are studied. In spite of the homogeneity of the wine samples which resulted from the similarity of the edaphic, varietal factors as well as the cultural conditions of the producing areas, two different clusters can be distinguished on the basis of all the methods used. The groups of wine samples obtained coincide with two viticultural zones that differ with regard to climate and geographical conditions. Therefore, a natural distinction can bei made between the wines produced in each adjacent zone, forming the basis for future differentiation according to brand name. Span Tree Minimal Span Tree Wine Sample Data Analysis Method Multivariate Data Analysis Rius, F. Xavier aut Enthalten in Zeitschrift für Lebensmittel-Untersuchung und -Forschung Springer-Verlag, 1943 185(1987), 3 vom: Sept., Seite 181-184 (DE-627)12947407X (DE-600)203000-7 (DE-576)01485192X 0044-3026 nnns volume:185 year:1987 number:3 month:09 pages:181-184 https://doi.org/10.1007/BF01042043 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OPC-FOR GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_183 GBV_ILN_252 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2066 GBV_ILN_2360 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4193 GBV_ILN_4219 GBV_ILN_4247 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4319 GBV_ILN_4328 AR 185 1987 3 09 181-184 |
allfieldsGer |
10.1007/BF01042043 doi (DE-627)OLC202993478X (DE-He213)BF01042043-p DE-627 ger DE-627 rakwb eng 630 640 VZ Larrechi, M. Soledad verfasserin aut Multivariate data analysis applied to the definition of two Catalan viticultural regions I. Cluster analysis 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1987 Summary Five multivariate data analysis methods, namely principal components analysis, non-linear mapping, hierarchical clustering, minimal spanning tree and mode analysis, were used to analyse the natural structure of red wines from Tarragona (Catalonia, Spain). Seventeen parameters were analysed for each sample to determine the multi-dimensional spectrum in which the wines are studied. In spite of the homogeneity of the wine samples which resulted from the similarity of the edaphic, varietal factors as well as the cultural conditions of the producing areas, two different clusters can be distinguished on the basis of all the methods used. The groups of wine samples obtained coincide with two viticultural zones that differ with regard to climate and geographical conditions. Therefore, a natural distinction can bei made between the wines produced in each adjacent zone, forming the basis for future differentiation according to brand name. Span Tree Minimal Span Tree Wine Sample Data Analysis Method Multivariate Data Analysis Rius, F. Xavier aut Enthalten in Zeitschrift für Lebensmittel-Untersuchung und -Forschung Springer-Verlag, 1943 185(1987), 3 vom: Sept., Seite 181-184 (DE-627)12947407X (DE-600)203000-7 (DE-576)01485192X 0044-3026 nnns volume:185 year:1987 number:3 month:09 pages:181-184 https://doi.org/10.1007/BF01042043 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OPC-FOR GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_183 GBV_ILN_252 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2066 GBV_ILN_2360 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4193 GBV_ILN_4219 GBV_ILN_4247 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4319 GBV_ILN_4328 AR 185 1987 3 09 181-184 |
allfieldsSound |
10.1007/BF01042043 doi (DE-627)OLC202993478X (DE-He213)BF01042043-p DE-627 ger DE-627 rakwb eng 630 640 VZ Larrechi, M. Soledad verfasserin aut Multivariate data analysis applied to the definition of two Catalan viticultural regions I. Cluster analysis 1987 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1987 Summary Five multivariate data analysis methods, namely principal components analysis, non-linear mapping, hierarchical clustering, minimal spanning tree and mode analysis, were used to analyse the natural structure of red wines from Tarragona (Catalonia, Spain). Seventeen parameters were analysed for each sample to determine the multi-dimensional spectrum in which the wines are studied. In spite of the homogeneity of the wine samples which resulted from the similarity of the edaphic, varietal factors as well as the cultural conditions of the producing areas, two different clusters can be distinguished on the basis of all the methods used. The groups of wine samples obtained coincide with two viticultural zones that differ with regard to climate and geographical conditions. Therefore, a natural distinction can bei made between the wines produced in each adjacent zone, forming the basis for future differentiation according to brand name. Span Tree Minimal Span Tree Wine Sample Data Analysis Method Multivariate Data Analysis Rius, F. Xavier aut Enthalten in Zeitschrift für Lebensmittel-Untersuchung und -Forschung Springer-Verlag, 1943 185(1987), 3 vom: Sept., Seite 181-184 (DE-627)12947407X (DE-600)203000-7 (DE-576)01485192X 0044-3026 nnns volume:185 year:1987 number:3 month:09 pages:181-184 https://doi.org/10.1007/BF01042043 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OPC-FOR GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_183 GBV_ILN_252 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2066 GBV_ILN_2360 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4193 GBV_ILN_4219 GBV_ILN_4247 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4319 GBV_ILN_4328 AR 185 1987 3 09 181-184 |
language |
English |
source |
Enthalten in Zeitschrift für Lebensmittel-Untersuchung und -Forschung 185(1987), 3 vom: Sept., Seite 181-184 volume:185 year:1987 number:3 month:09 pages:181-184 |
sourceStr |
Enthalten in Zeitschrift für Lebensmittel-Untersuchung und -Forschung 185(1987), 3 vom: Sept., Seite 181-184 volume:185 year:1987 number:3 month:09 pages:181-184 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Span Tree Minimal Span Tree Wine Sample Data Analysis Method Multivariate Data Analysis |
dewey-raw |
630 |
isfreeaccess_bool |
false |
container_title |
Zeitschrift für Lebensmittel-Untersuchung und -Forschung |
authorswithroles_txt_mv |
Larrechi, M. Soledad @@aut@@ Rius, F. Xavier @@aut@@ |
publishDateDaySort_date |
1987-09-01T00:00:00Z |
hierarchy_top_id |
12947407X |
dewey-sort |
3630 |
id |
OLC202993478X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC202993478X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323191239.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1987 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01042043</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC202993478X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01042043-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Larrechi, M. Soledad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multivariate data analysis applied to the definition of two Catalan viticultural regions I. Cluster analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1987</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1987</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary Five multivariate data analysis methods, namely principal components analysis, non-linear mapping, hierarchical clustering, minimal spanning tree and mode analysis, were used to analyse the natural structure of red wines from Tarragona (Catalonia, Spain). Seventeen parameters were analysed for each sample to determine the multi-dimensional spectrum in which the wines are studied. In spite of the homogeneity of the wine samples which resulted from the similarity of the edaphic, varietal factors as well as the cultural conditions of the producing areas, two different clusters can be distinguished on the basis of all the methods used. The groups of wine samples obtained coincide with two viticultural zones that differ with regard to climate and geographical conditions. Therefore, a natural distinction can bei made between the wines produced in each adjacent zone, forming the basis for future differentiation according to brand name.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Span Tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal Span Tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wine Sample</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Analysis Method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate Data Analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rius, F. Xavier</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Zeitschrift für Lebensmittel-Untersuchung und -Forschung</subfield><subfield code="d">Springer-Verlag, 1943</subfield><subfield code="g">185(1987), 3 vom: Sept., Seite 181-184</subfield><subfield code="w">(DE-627)12947407X</subfield><subfield code="w">(DE-600)203000-7</subfield><subfield code="w">(DE-576)01485192X</subfield><subfield code="x">0044-3026</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:185</subfield><subfield code="g">year:1987</subfield><subfield code="g">number:3</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:181-184</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01042043</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_183</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2066</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4247</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">185</subfield><subfield code="j">1987</subfield><subfield code="e">3</subfield><subfield code="c">09</subfield><subfield code="h">181-184</subfield></datafield></record></collection>
|
author |
Larrechi, M. Soledad |
spellingShingle |
Larrechi, M. Soledad ddc 630 misc Span Tree misc Minimal Span Tree misc Wine Sample misc Data Analysis Method misc Multivariate Data Analysis Multivariate data analysis applied to the definition of two Catalan viticultural regions I. Cluster analysis |
authorStr |
Larrechi, M. Soledad |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12947407X |
format |
Article |
dewey-ones |
630 - Agriculture & related technologies 640 - Home & family management |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0044-3026 |
topic_title |
630 640 VZ Multivariate data analysis applied to the definition of two Catalan viticultural regions I. Cluster analysis Span Tree Minimal Span Tree Wine Sample Data Analysis Method Multivariate Data Analysis |
topic |
ddc 630 misc Span Tree misc Minimal Span Tree misc Wine Sample misc Data Analysis Method misc Multivariate Data Analysis |
topic_unstemmed |
ddc 630 misc Span Tree misc Minimal Span Tree misc Wine Sample misc Data Analysis Method misc Multivariate Data Analysis |
topic_browse |
ddc 630 misc Span Tree misc Minimal Span Tree misc Wine Sample misc Data Analysis Method misc Multivariate Data Analysis |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Zeitschrift für Lebensmittel-Untersuchung und -Forschung |
hierarchy_parent_id |
12947407X |
dewey-tens |
630 - Agriculture 640 - Home & family management |
hierarchy_top_title |
Zeitschrift für Lebensmittel-Untersuchung und -Forschung |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12947407X (DE-600)203000-7 (DE-576)01485192X |
title |
Multivariate data analysis applied to the definition of two Catalan viticultural regions I. Cluster analysis |
ctrlnum |
(DE-627)OLC202993478X (DE-He213)BF01042043-p |
title_full |
Multivariate data analysis applied to the definition of two Catalan viticultural regions I. Cluster analysis |
author_sort |
Larrechi, M. Soledad |
journal |
Zeitschrift für Lebensmittel-Untersuchung und -Forschung |
journalStr |
Zeitschrift für Lebensmittel-Untersuchung und -Forschung |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1987 |
contenttype_str_mv |
txt |
container_start_page |
181 |
author_browse |
Larrechi, M. Soledad Rius, F. Xavier |
container_volume |
185 |
class |
630 640 VZ |
format_se |
Aufsätze |
author-letter |
Larrechi, M. Soledad |
doi_str_mv |
10.1007/BF01042043 |
dewey-full |
630 640 |
title_sort |
multivariate data analysis applied to the definition of two catalan viticultural regions i. cluster analysis |
title_auth |
Multivariate data analysis applied to the definition of two Catalan viticultural regions I. Cluster analysis |
abstract |
Summary Five multivariate data analysis methods, namely principal components analysis, non-linear mapping, hierarchical clustering, minimal spanning tree and mode analysis, were used to analyse the natural structure of red wines from Tarragona (Catalonia, Spain). Seventeen parameters were analysed for each sample to determine the multi-dimensional spectrum in which the wines are studied. In spite of the homogeneity of the wine samples which resulted from the similarity of the edaphic, varietal factors as well as the cultural conditions of the producing areas, two different clusters can be distinguished on the basis of all the methods used. The groups of wine samples obtained coincide with two viticultural zones that differ with regard to climate and geographical conditions. Therefore, a natural distinction can bei made between the wines produced in each adjacent zone, forming the basis for future differentiation according to brand name. © Springer-Verlag 1987 |
abstractGer |
Summary Five multivariate data analysis methods, namely principal components analysis, non-linear mapping, hierarchical clustering, minimal spanning tree and mode analysis, were used to analyse the natural structure of red wines from Tarragona (Catalonia, Spain). Seventeen parameters were analysed for each sample to determine the multi-dimensional spectrum in which the wines are studied. In spite of the homogeneity of the wine samples which resulted from the similarity of the edaphic, varietal factors as well as the cultural conditions of the producing areas, two different clusters can be distinguished on the basis of all the methods used. The groups of wine samples obtained coincide with two viticultural zones that differ with regard to climate and geographical conditions. Therefore, a natural distinction can bei made between the wines produced in each adjacent zone, forming the basis for future differentiation according to brand name. © Springer-Verlag 1987 |
abstract_unstemmed |
Summary Five multivariate data analysis methods, namely principal components analysis, non-linear mapping, hierarchical clustering, minimal spanning tree and mode analysis, were used to analyse the natural structure of red wines from Tarragona (Catalonia, Spain). Seventeen parameters were analysed for each sample to determine the multi-dimensional spectrum in which the wines are studied. In spite of the homogeneity of the wine samples which resulted from the similarity of the edaphic, varietal factors as well as the cultural conditions of the producing areas, two different clusters can be distinguished on the basis of all the methods used. The groups of wine samples obtained coincide with two viticultural zones that differ with regard to climate and geographical conditions. Therefore, a natural distinction can bei made between the wines produced in each adjacent zone, forming the basis for future differentiation according to brand name. © Springer-Verlag 1987 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OPC-FOR GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_183 GBV_ILN_252 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2066 GBV_ILN_2360 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4035 GBV_ILN_4036 GBV_ILN_4046 GBV_ILN_4103 GBV_ILN_4193 GBV_ILN_4219 GBV_ILN_4247 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4319 GBV_ILN_4328 |
container_issue |
3 |
title_short |
Multivariate data analysis applied to the definition of two Catalan viticultural regions I. Cluster analysis |
url |
https://doi.org/10.1007/BF01042043 |
remote_bool |
false |
author2 |
Rius, F. Xavier |
author2Str |
Rius, F. Xavier |
ppnlink |
12947407X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01042043 |
up_date |
2024-07-04T00:35:37.781Z |
_version_ |
1803606648741167105 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC202993478X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230323191239.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1987 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01042043</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC202993478X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01042043-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Larrechi, M. Soledad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multivariate data analysis applied to the definition of two Catalan viticultural regions I. Cluster analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1987</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1987</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary Five multivariate data analysis methods, namely principal components analysis, non-linear mapping, hierarchical clustering, minimal spanning tree and mode analysis, were used to analyse the natural structure of red wines from Tarragona (Catalonia, Spain). Seventeen parameters were analysed for each sample to determine the multi-dimensional spectrum in which the wines are studied. In spite of the homogeneity of the wine samples which resulted from the similarity of the edaphic, varietal factors as well as the cultural conditions of the producing areas, two different clusters can be distinguished on the basis of all the methods used. The groups of wine samples obtained coincide with two viticultural zones that differ with regard to climate and geographical conditions. Therefore, a natural distinction can bei made between the wines produced in each adjacent zone, forming the basis for future differentiation according to brand name.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Span Tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Minimal Span Tree</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wine Sample</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Analysis Method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate Data Analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rius, F. Xavier</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Zeitschrift für Lebensmittel-Untersuchung und -Forschung</subfield><subfield code="d">Springer-Verlag, 1943</subfield><subfield code="g">185(1987), 3 vom: Sept., Seite 181-184</subfield><subfield code="w">(DE-627)12947407X</subfield><subfield code="w">(DE-600)203000-7</subfield><subfield code="w">(DE-576)01485192X</subfield><subfield code="x">0044-3026</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:185</subfield><subfield code="g">year:1987</subfield><subfield code="g">number:3</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:181-184</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01042043</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_183</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2066</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4247</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">185</subfield><subfield code="j">1987</subfield><subfield code="e">3</subfield><subfield code="c">09</subfield><subfield code="h">181-184</subfield></datafield></record></collection>
|
score |
7.400996 |