Quasistatic problem of a non-homogeneous elastic layer containing a crack
Summary A nonhomogeneous elastic layer is weakened by an infinite, rectilinear crack separating two layers of different elastic materials. The boundary surfaces of the layer are rigidly clamped and the crack surfaces loaded by arbitrary forces satisfying the conditions of antiplane state of strain....
Ausführliche Beschreibung
Autor*in: |
Matczyński, M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1974 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 1974 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta mechanica - Springer-Verlag, 1965, 19(1974), 3-4 vom: Sept., Seite 153-168 |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:1974 ; number:3-4 ; month:09 ; pages:153-168 |
Links: |
---|
DOI / URN: |
10.1007/BF01176483 |
---|
Katalog-ID: |
OLC2030097977 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2030097977 | ||
003 | DE-627 | ||
005 | 20230502142929.0 | ||
007 | tu | ||
008 | 200820s1974 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01176483 |2 doi | |
035 | |a (DE-627)OLC2030097977 | ||
035 | |a (DE-He213)BF01176483-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Matczyński, M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quasistatic problem of a non-homogeneous elastic layer containing a crack |
264 | 1 | |c 1974 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 1974 | ||
520 | |a Summary A nonhomogeneous elastic layer is weakened by an infinite, rectilinear crack separating two layers of different elastic materials. The boundary surfaces of the layer are rigidly clamped and the crack surfaces loaded by arbitrary forces satisfying the conditions of antiplane state of strain. Considered are two cases, the crack and its load propagating at a constant velocity along the horizontal axis, and the load being a harmonic function of time, respectively. In the both cases exact values of the stress intensity factor for arbitrary loading (arbitrary load amplitude) of the crack are given. In the limiting cases, solutions of static problems are obtained. The results are illustrated by particular solutions concerning the cases when the crack edge load (or its amplitude) is constant on its entire length. | ||
650 | 4 | |a Fluid Dynamics | |
650 | 4 | |a Stress Intensity | |
650 | 4 | |a Intensity Factor | |
650 | 4 | |a Stress Intensity Factor | |
650 | 4 | |a Harmonic Function | |
773 | 0 | 8 | |i Enthalten in |t Acta mechanica |d Springer-Verlag, 1965 |g 19(1974), 3-4 vom: Sept., Seite 153-168 |w (DE-627)129511676 |w (DE-600)210328-X |w (DE-576)014919141 |x 0001-5970 |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:1974 |g number:3-4 |g month:09 |g pages:153-168 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01176483 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2333 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4309 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4316 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 19 |j 1974 |e 3-4 |c 09 |h 153-168 |
author_variant |
m m mm |
---|---|
matchkey_str |
article:00015970:1974----::ussaipolmfnnooeeueatca |
hierarchy_sort_str |
1974 |
publishDate |
1974 |
allfields |
10.1007/BF01176483 doi (DE-627)OLC2030097977 (DE-He213)BF01176483-p DE-627 ger DE-627 rakwb eng 530 VZ Matczyński, M. verfasserin aut Quasistatic problem of a non-homogeneous elastic layer containing a crack 1974 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1974 Summary A nonhomogeneous elastic layer is weakened by an infinite, rectilinear crack separating two layers of different elastic materials. The boundary surfaces of the layer are rigidly clamped and the crack surfaces loaded by arbitrary forces satisfying the conditions of antiplane state of strain. Considered are two cases, the crack and its load propagating at a constant velocity along the horizontal axis, and the load being a harmonic function of time, respectively. In the both cases exact values of the stress intensity factor for arbitrary loading (arbitrary load amplitude) of the crack are given. In the limiting cases, solutions of static problems are obtained. The results are illustrated by particular solutions concerning the cases when the crack edge load (or its amplitude) is constant on its entire length. Fluid Dynamics Stress Intensity Intensity Factor Stress Intensity Factor Harmonic Function Enthalten in Acta mechanica Springer-Verlag, 1965 19(1974), 3-4 vom: Sept., Seite 153-168 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:19 year:1974 number:3-4 month:09 pages:153-168 https://doi.org/10.1007/BF01176483 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_59 GBV_ILN_63 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4309 GBV_ILN_4313 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4700 AR 19 1974 3-4 09 153-168 |
spelling |
10.1007/BF01176483 doi (DE-627)OLC2030097977 (DE-He213)BF01176483-p DE-627 ger DE-627 rakwb eng 530 VZ Matczyński, M. verfasserin aut Quasistatic problem of a non-homogeneous elastic layer containing a crack 1974 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1974 Summary A nonhomogeneous elastic layer is weakened by an infinite, rectilinear crack separating two layers of different elastic materials. The boundary surfaces of the layer are rigidly clamped and the crack surfaces loaded by arbitrary forces satisfying the conditions of antiplane state of strain. Considered are two cases, the crack and its load propagating at a constant velocity along the horizontal axis, and the load being a harmonic function of time, respectively. In the both cases exact values of the stress intensity factor for arbitrary loading (arbitrary load amplitude) of the crack are given. In the limiting cases, solutions of static problems are obtained. The results are illustrated by particular solutions concerning the cases when the crack edge load (or its amplitude) is constant on its entire length. Fluid Dynamics Stress Intensity Intensity Factor Stress Intensity Factor Harmonic Function Enthalten in Acta mechanica Springer-Verlag, 1965 19(1974), 3-4 vom: Sept., Seite 153-168 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:19 year:1974 number:3-4 month:09 pages:153-168 https://doi.org/10.1007/BF01176483 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_59 GBV_ILN_63 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4309 GBV_ILN_4313 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4700 AR 19 1974 3-4 09 153-168 |
allfields_unstemmed |
10.1007/BF01176483 doi (DE-627)OLC2030097977 (DE-He213)BF01176483-p DE-627 ger DE-627 rakwb eng 530 VZ Matczyński, M. verfasserin aut Quasistatic problem of a non-homogeneous elastic layer containing a crack 1974 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1974 Summary A nonhomogeneous elastic layer is weakened by an infinite, rectilinear crack separating two layers of different elastic materials. The boundary surfaces of the layer are rigidly clamped and the crack surfaces loaded by arbitrary forces satisfying the conditions of antiplane state of strain. Considered are two cases, the crack and its load propagating at a constant velocity along the horizontal axis, and the load being a harmonic function of time, respectively. In the both cases exact values of the stress intensity factor for arbitrary loading (arbitrary load amplitude) of the crack are given. In the limiting cases, solutions of static problems are obtained. The results are illustrated by particular solutions concerning the cases when the crack edge load (or its amplitude) is constant on its entire length. Fluid Dynamics Stress Intensity Intensity Factor Stress Intensity Factor Harmonic Function Enthalten in Acta mechanica Springer-Verlag, 1965 19(1974), 3-4 vom: Sept., Seite 153-168 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:19 year:1974 number:3-4 month:09 pages:153-168 https://doi.org/10.1007/BF01176483 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_59 GBV_ILN_63 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4309 GBV_ILN_4313 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4700 AR 19 1974 3-4 09 153-168 |
allfieldsGer |
10.1007/BF01176483 doi (DE-627)OLC2030097977 (DE-He213)BF01176483-p DE-627 ger DE-627 rakwb eng 530 VZ Matczyński, M. verfasserin aut Quasistatic problem of a non-homogeneous elastic layer containing a crack 1974 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1974 Summary A nonhomogeneous elastic layer is weakened by an infinite, rectilinear crack separating two layers of different elastic materials. The boundary surfaces of the layer are rigidly clamped and the crack surfaces loaded by arbitrary forces satisfying the conditions of antiplane state of strain. Considered are two cases, the crack and its load propagating at a constant velocity along the horizontal axis, and the load being a harmonic function of time, respectively. In the both cases exact values of the stress intensity factor for arbitrary loading (arbitrary load amplitude) of the crack are given. In the limiting cases, solutions of static problems are obtained. The results are illustrated by particular solutions concerning the cases when the crack edge load (or its amplitude) is constant on its entire length. Fluid Dynamics Stress Intensity Intensity Factor Stress Intensity Factor Harmonic Function Enthalten in Acta mechanica Springer-Verlag, 1965 19(1974), 3-4 vom: Sept., Seite 153-168 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:19 year:1974 number:3-4 month:09 pages:153-168 https://doi.org/10.1007/BF01176483 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_59 GBV_ILN_63 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4309 GBV_ILN_4313 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4700 AR 19 1974 3-4 09 153-168 |
allfieldsSound |
10.1007/BF01176483 doi (DE-627)OLC2030097977 (DE-He213)BF01176483-p DE-627 ger DE-627 rakwb eng 530 VZ Matczyński, M. verfasserin aut Quasistatic problem of a non-homogeneous elastic layer containing a crack 1974 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1974 Summary A nonhomogeneous elastic layer is weakened by an infinite, rectilinear crack separating two layers of different elastic materials. The boundary surfaces of the layer are rigidly clamped and the crack surfaces loaded by arbitrary forces satisfying the conditions of antiplane state of strain. Considered are two cases, the crack and its load propagating at a constant velocity along the horizontal axis, and the load being a harmonic function of time, respectively. In the both cases exact values of the stress intensity factor for arbitrary loading (arbitrary load amplitude) of the crack are given. In the limiting cases, solutions of static problems are obtained. The results are illustrated by particular solutions concerning the cases when the crack edge load (or its amplitude) is constant on its entire length. Fluid Dynamics Stress Intensity Intensity Factor Stress Intensity Factor Harmonic Function Enthalten in Acta mechanica Springer-Verlag, 1965 19(1974), 3-4 vom: Sept., Seite 153-168 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:19 year:1974 number:3-4 month:09 pages:153-168 https://doi.org/10.1007/BF01176483 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_59 GBV_ILN_63 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4309 GBV_ILN_4313 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4700 AR 19 1974 3-4 09 153-168 |
language |
English |
source |
Enthalten in Acta mechanica 19(1974), 3-4 vom: Sept., Seite 153-168 volume:19 year:1974 number:3-4 month:09 pages:153-168 |
sourceStr |
Enthalten in Acta mechanica 19(1974), 3-4 vom: Sept., Seite 153-168 volume:19 year:1974 number:3-4 month:09 pages:153-168 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fluid Dynamics Stress Intensity Intensity Factor Stress Intensity Factor Harmonic Function |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Acta mechanica |
authorswithroles_txt_mv |
Matczyński, M. @@aut@@ |
publishDateDaySort_date |
1974-09-01T00:00:00Z |
hierarchy_top_id |
129511676 |
dewey-sort |
3530 |
id |
OLC2030097977 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030097977</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502142929.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1974 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01176483</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030097977</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01176483-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Matczyński, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasistatic problem of a non-homogeneous elastic layer containing a crack</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1974</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1974</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary A nonhomogeneous elastic layer is weakened by an infinite, rectilinear crack separating two layers of different elastic materials. The boundary surfaces of the layer are rigidly clamped and the crack surfaces loaded by arbitrary forces satisfying the conditions of antiplane state of strain. Considered are two cases, the crack and its load propagating at a constant velocity along the horizontal axis, and the load being a harmonic function of time, respectively. In the both cases exact values of the stress intensity factor for arbitrary loading (arbitrary load amplitude) of the crack are given. In the limiting cases, solutions of static problems are obtained. The results are illustrated by particular solutions concerning the cases when the crack edge load (or its amplitude) is constant on its entire length.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Intensity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intensity Factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Intensity Factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic Function</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer-Verlag, 1965</subfield><subfield code="g">19(1974), 3-4 vom: Sept., Seite 153-168</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:1974</subfield><subfield code="g">number:3-4</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:153-168</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01176483</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4309</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">1974</subfield><subfield code="e">3-4</subfield><subfield code="c">09</subfield><subfield code="h">153-168</subfield></datafield></record></collection>
|
author |
Matczyński, M. |
spellingShingle |
Matczyński, M. ddc 530 misc Fluid Dynamics misc Stress Intensity misc Intensity Factor misc Stress Intensity Factor misc Harmonic Function Quasistatic problem of a non-homogeneous elastic layer containing a crack |
authorStr |
Matczyński, M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129511676 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-5970 |
topic_title |
530 VZ Quasistatic problem of a non-homogeneous elastic layer containing a crack Fluid Dynamics Stress Intensity Intensity Factor Stress Intensity Factor Harmonic Function |
topic |
ddc 530 misc Fluid Dynamics misc Stress Intensity misc Intensity Factor misc Stress Intensity Factor misc Harmonic Function |
topic_unstemmed |
ddc 530 misc Fluid Dynamics misc Stress Intensity misc Intensity Factor misc Stress Intensity Factor misc Harmonic Function |
topic_browse |
ddc 530 misc Fluid Dynamics misc Stress Intensity misc Intensity Factor misc Stress Intensity Factor misc Harmonic Function |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta mechanica |
hierarchy_parent_id |
129511676 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Acta mechanica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129511676 (DE-600)210328-X (DE-576)014919141 |
title |
Quasistatic problem of a non-homogeneous elastic layer containing a crack |
ctrlnum |
(DE-627)OLC2030097977 (DE-He213)BF01176483-p |
title_full |
Quasistatic problem of a non-homogeneous elastic layer containing a crack |
author_sort |
Matczyński, M. |
journal |
Acta mechanica |
journalStr |
Acta mechanica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1974 |
contenttype_str_mv |
txt |
container_start_page |
153 |
author_browse |
Matczyński, M. |
container_volume |
19 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Matczyński, M. |
doi_str_mv |
10.1007/BF01176483 |
dewey-full |
530 |
title_sort |
quasistatic problem of a non-homogeneous elastic layer containing a crack |
title_auth |
Quasistatic problem of a non-homogeneous elastic layer containing a crack |
abstract |
Summary A nonhomogeneous elastic layer is weakened by an infinite, rectilinear crack separating two layers of different elastic materials. The boundary surfaces of the layer are rigidly clamped and the crack surfaces loaded by arbitrary forces satisfying the conditions of antiplane state of strain. Considered are two cases, the crack and its load propagating at a constant velocity along the horizontal axis, and the load being a harmonic function of time, respectively. In the both cases exact values of the stress intensity factor for arbitrary loading (arbitrary load amplitude) of the crack are given. In the limiting cases, solutions of static problems are obtained. The results are illustrated by particular solutions concerning the cases when the crack edge load (or its amplitude) is constant on its entire length. © Springer-Verlag 1974 |
abstractGer |
Summary A nonhomogeneous elastic layer is weakened by an infinite, rectilinear crack separating two layers of different elastic materials. The boundary surfaces of the layer are rigidly clamped and the crack surfaces loaded by arbitrary forces satisfying the conditions of antiplane state of strain. Considered are two cases, the crack and its load propagating at a constant velocity along the horizontal axis, and the load being a harmonic function of time, respectively. In the both cases exact values of the stress intensity factor for arbitrary loading (arbitrary load amplitude) of the crack are given. In the limiting cases, solutions of static problems are obtained. The results are illustrated by particular solutions concerning the cases when the crack edge load (or its amplitude) is constant on its entire length. © Springer-Verlag 1974 |
abstract_unstemmed |
Summary A nonhomogeneous elastic layer is weakened by an infinite, rectilinear crack separating two layers of different elastic materials. The boundary surfaces of the layer are rigidly clamped and the crack surfaces loaded by arbitrary forces satisfying the conditions of antiplane state of strain. Considered are two cases, the crack and its load propagating at a constant velocity along the horizontal axis, and the load being a harmonic function of time, respectively. In the both cases exact values of the stress intensity factor for arbitrary loading (arbitrary load amplitude) of the crack are given. In the limiting cases, solutions of static problems are obtained. The results are illustrated by particular solutions concerning the cases when the crack edge load (or its amplitude) is constant on its entire length. © Springer-Verlag 1974 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_40 GBV_ILN_59 GBV_ILN_63 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4309 GBV_ILN_4313 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4700 |
container_issue |
3-4 |
title_short |
Quasistatic problem of a non-homogeneous elastic layer containing a crack |
url |
https://doi.org/10.1007/BF01176483 |
remote_bool |
false |
ppnlink |
129511676 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01176483 |
up_date |
2024-07-04T01:15:48.396Z |
_version_ |
1803609176433229824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030097977</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502142929.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1974 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01176483</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030097977</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01176483-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Matczyński, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasistatic problem of a non-homogeneous elastic layer containing a crack</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1974</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1974</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary A nonhomogeneous elastic layer is weakened by an infinite, rectilinear crack separating two layers of different elastic materials. The boundary surfaces of the layer are rigidly clamped and the crack surfaces loaded by arbitrary forces satisfying the conditions of antiplane state of strain. Considered are two cases, the crack and its load propagating at a constant velocity along the horizontal axis, and the load being a harmonic function of time, respectively. In the both cases exact values of the stress intensity factor for arbitrary loading (arbitrary load amplitude) of the crack are given. In the limiting cases, solutions of static problems are obtained. The results are illustrated by particular solutions concerning the cases when the crack edge load (or its amplitude) is constant on its entire length.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Intensity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intensity Factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Intensity Factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic Function</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer-Verlag, 1965</subfield><subfield code="g">19(1974), 3-4 vom: Sept., Seite 153-168</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:1974</subfield><subfield code="g">number:3-4</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:153-168</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01176483</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4309</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">1974</subfield><subfield code="e">3-4</subfield><subfield code="c">09</subfield><subfield code="h">153-168</subfield></datafield></record></collection>
|
score |
7.401636 |