Plane transonic solution with shock by direct iteration
Summary Transonic reduced pressure distributions at thin symmetrical nonlifting profiles, with high subsonic free stream velocity are predicted by determining approximate solutions of the Oswatitsch integral equation by direct iteration scheme [1], which is extended here to include shocks. Converged...
Ausführliche Beschreibung
Autor*in: |
Niyogi, P. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1981 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 1981 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta mechanica - Springer-Verlag, 1965, 38(1981), 3-4 vom: Sept., Seite 169-181 |
---|---|
Übergeordnetes Werk: |
volume:38 ; year:1981 ; number:3-4 ; month:09 ; pages:169-181 |
Links: |
---|
DOI / URN: |
10.1007/BF01176461 |
---|
Katalog-ID: |
OLC2030102555 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2030102555 | ||
003 | DE-627 | ||
005 | 20230502142945.0 | ||
007 | tu | ||
008 | 200820s1981 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01176461 |2 doi | |
035 | |a (DE-627)OLC2030102555 | ||
035 | |a (DE-He213)BF01176461-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Niyogi, P. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Plane transonic solution with shock by direct iteration |
264 | 1 | |c 1981 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 1981 | ||
520 | |a Summary Transonic reduced pressure distributions at thin symmetrical nonlifting profiles, with high subsonic free stream velocity are predicted by determining approximate solutions of the Oswatitsch integral equation by direct iteration scheme [1], which is extended here to include shocks. Converged solution with shock may be obtained if the starting solution contains a shock discontinuity or else, if with a continuous starting solution, the expansion shock which appearts at the accelerating sonic point be excluded at each iteration step. Computational results have been presented for a NACA 0012 profile and a parabolic arc profile and compared with other numerical results, which indicate good agreement, particularly for the shock position. A typical profile shape with shock converges in only 16 iteration steps, correct up to two decimal places requiring about 30 secs. of CPU time on a Burroughs B6700 computer system. | ||
650 | 4 | |a Iteration Step | |
650 | 4 | |a Free Stream | |
650 | 4 | |a Free Stream Velocity | |
650 | 4 | |a Iteration Scheme | |
650 | 4 | |a Profile Shape | |
700 | 1 | |a Das, T. K. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Acta mechanica |d Springer-Verlag, 1965 |g 38(1981), 3-4 vom: Sept., Seite 169-181 |w (DE-627)129511676 |w (DE-600)210328-X |w (DE-576)014919141 |x 0001-5970 |7 nnns |
773 | 1 | 8 | |g volume:38 |g year:1981 |g number:3-4 |g month:09 |g pages:169-181 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01176461 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2333 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4309 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4316 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 38 |j 1981 |e 3-4 |c 09 |h 169-181 |
author_variant |
p n pn t k d tk tkd |
---|---|
matchkey_str |
article:00015970:1981----::lntasncouinihhcbdr |
hierarchy_sort_str |
1981 |
publishDate |
1981 |
allfields |
10.1007/BF01176461 doi (DE-627)OLC2030102555 (DE-He213)BF01176461-p DE-627 ger DE-627 rakwb eng 530 VZ Niyogi, P. verfasserin aut Plane transonic solution with shock by direct iteration 1981 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1981 Summary Transonic reduced pressure distributions at thin symmetrical nonlifting profiles, with high subsonic free stream velocity are predicted by determining approximate solutions of the Oswatitsch integral equation by direct iteration scheme [1], which is extended here to include shocks. Converged solution with shock may be obtained if the starting solution contains a shock discontinuity or else, if with a continuous starting solution, the expansion shock which appearts at the accelerating sonic point be excluded at each iteration step. Computational results have been presented for a NACA 0012 profile and a parabolic arc profile and compared with other numerical results, which indicate good agreement, particularly for the shock position. A typical profile shape with shock converges in only 16 iteration steps, correct up to two decimal places requiring about 30 secs. of CPU time on a Burroughs B6700 computer system. Iteration Step Free Stream Free Stream Velocity Iteration Scheme Profile Shape Das, T. K. aut Enthalten in Acta mechanica Springer-Verlag, 1965 38(1981), 3-4 vom: Sept., Seite 169-181 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:38 year:1981 number:3-4 month:09 pages:169-181 https://doi.org/10.1007/BF01176461 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_59 GBV_ILN_63 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4309 GBV_ILN_4313 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4700 AR 38 1981 3-4 09 169-181 |
spelling |
10.1007/BF01176461 doi (DE-627)OLC2030102555 (DE-He213)BF01176461-p DE-627 ger DE-627 rakwb eng 530 VZ Niyogi, P. verfasserin aut Plane transonic solution with shock by direct iteration 1981 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1981 Summary Transonic reduced pressure distributions at thin symmetrical nonlifting profiles, with high subsonic free stream velocity are predicted by determining approximate solutions of the Oswatitsch integral equation by direct iteration scheme [1], which is extended here to include shocks. Converged solution with shock may be obtained if the starting solution contains a shock discontinuity or else, if with a continuous starting solution, the expansion shock which appearts at the accelerating sonic point be excluded at each iteration step. Computational results have been presented for a NACA 0012 profile and a parabolic arc profile and compared with other numerical results, which indicate good agreement, particularly for the shock position. A typical profile shape with shock converges in only 16 iteration steps, correct up to two decimal places requiring about 30 secs. of CPU time on a Burroughs B6700 computer system. Iteration Step Free Stream Free Stream Velocity Iteration Scheme Profile Shape Das, T. K. aut Enthalten in Acta mechanica Springer-Verlag, 1965 38(1981), 3-4 vom: Sept., Seite 169-181 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:38 year:1981 number:3-4 month:09 pages:169-181 https://doi.org/10.1007/BF01176461 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_59 GBV_ILN_63 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4309 GBV_ILN_4313 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4700 AR 38 1981 3-4 09 169-181 |
allfields_unstemmed |
10.1007/BF01176461 doi (DE-627)OLC2030102555 (DE-He213)BF01176461-p DE-627 ger DE-627 rakwb eng 530 VZ Niyogi, P. verfasserin aut Plane transonic solution with shock by direct iteration 1981 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1981 Summary Transonic reduced pressure distributions at thin symmetrical nonlifting profiles, with high subsonic free stream velocity are predicted by determining approximate solutions of the Oswatitsch integral equation by direct iteration scheme [1], which is extended here to include shocks. Converged solution with shock may be obtained if the starting solution contains a shock discontinuity or else, if with a continuous starting solution, the expansion shock which appearts at the accelerating sonic point be excluded at each iteration step. Computational results have been presented for a NACA 0012 profile and a parabolic arc profile and compared with other numerical results, which indicate good agreement, particularly for the shock position. A typical profile shape with shock converges in only 16 iteration steps, correct up to two decimal places requiring about 30 secs. of CPU time on a Burroughs B6700 computer system. Iteration Step Free Stream Free Stream Velocity Iteration Scheme Profile Shape Das, T. K. aut Enthalten in Acta mechanica Springer-Verlag, 1965 38(1981), 3-4 vom: Sept., Seite 169-181 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:38 year:1981 number:3-4 month:09 pages:169-181 https://doi.org/10.1007/BF01176461 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_59 GBV_ILN_63 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4309 GBV_ILN_4313 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4700 AR 38 1981 3-4 09 169-181 |
allfieldsGer |
10.1007/BF01176461 doi (DE-627)OLC2030102555 (DE-He213)BF01176461-p DE-627 ger DE-627 rakwb eng 530 VZ Niyogi, P. verfasserin aut Plane transonic solution with shock by direct iteration 1981 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1981 Summary Transonic reduced pressure distributions at thin symmetrical nonlifting profiles, with high subsonic free stream velocity are predicted by determining approximate solutions of the Oswatitsch integral equation by direct iteration scheme [1], which is extended here to include shocks. Converged solution with shock may be obtained if the starting solution contains a shock discontinuity or else, if with a continuous starting solution, the expansion shock which appearts at the accelerating sonic point be excluded at each iteration step. Computational results have been presented for a NACA 0012 profile and a parabolic arc profile and compared with other numerical results, which indicate good agreement, particularly for the shock position. A typical profile shape with shock converges in only 16 iteration steps, correct up to two decimal places requiring about 30 secs. of CPU time on a Burroughs B6700 computer system. Iteration Step Free Stream Free Stream Velocity Iteration Scheme Profile Shape Das, T. K. aut Enthalten in Acta mechanica Springer-Verlag, 1965 38(1981), 3-4 vom: Sept., Seite 169-181 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:38 year:1981 number:3-4 month:09 pages:169-181 https://doi.org/10.1007/BF01176461 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_59 GBV_ILN_63 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4309 GBV_ILN_4313 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4700 AR 38 1981 3-4 09 169-181 |
allfieldsSound |
10.1007/BF01176461 doi (DE-627)OLC2030102555 (DE-He213)BF01176461-p DE-627 ger DE-627 rakwb eng 530 VZ Niyogi, P. verfasserin aut Plane transonic solution with shock by direct iteration 1981 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1981 Summary Transonic reduced pressure distributions at thin symmetrical nonlifting profiles, with high subsonic free stream velocity are predicted by determining approximate solutions of the Oswatitsch integral equation by direct iteration scheme [1], which is extended here to include shocks. Converged solution with shock may be obtained if the starting solution contains a shock discontinuity or else, if with a continuous starting solution, the expansion shock which appearts at the accelerating sonic point be excluded at each iteration step. Computational results have been presented for a NACA 0012 profile and a parabolic arc profile and compared with other numerical results, which indicate good agreement, particularly for the shock position. A typical profile shape with shock converges in only 16 iteration steps, correct up to two decimal places requiring about 30 secs. of CPU time on a Burroughs B6700 computer system. Iteration Step Free Stream Free Stream Velocity Iteration Scheme Profile Shape Das, T. K. aut Enthalten in Acta mechanica Springer-Verlag, 1965 38(1981), 3-4 vom: Sept., Seite 169-181 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:38 year:1981 number:3-4 month:09 pages:169-181 https://doi.org/10.1007/BF01176461 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_59 GBV_ILN_63 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4309 GBV_ILN_4313 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4700 AR 38 1981 3-4 09 169-181 |
language |
English |
source |
Enthalten in Acta mechanica 38(1981), 3-4 vom: Sept., Seite 169-181 volume:38 year:1981 number:3-4 month:09 pages:169-181 |
sourceStr |
Enthalten in Acta mechanica 38(1981), 3-4 vom: Sept., Seite 169-181 volume:38 year:1981 number:3-4 month:09 pages:169-181 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Iteration Step Free Stream Free Stream Velocity Iteration Scheme Profile Shape |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Acta mechanica |
authorswithroles_txt_mv |
Niyogi, P. @@aut@@ Das, T. K. @@aut@@ |
publishDateDaySort_date |
1981-09-01T00:00:00Z |
hierarchy_top_id |
129511676 |
dewey-sort |
3530 |
id |
OLC2030102555 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030102555</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502142945.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1981 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01176461</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030102555</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01176461-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Niyogi, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plane transonic solution with shock by direct iteration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1981</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1981</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary Transonic reduced pressure distributions at thin symmetrical nonlifting profiles, with high subsonic free stream velocity are predicted by determining approximate solutions of the Oswatitsch integral equation by direct iteration scheme [1], which is extended here to include shocks. Converged solution with shock may be obtained if the starting solution contains a shock discontinuity or else, if with a continuous starting solution, the expansion shock which appearts at the accelerating sonic point be excluded at each iteration step. Computational results have been presented for a NACA 0012 profile and a parabolic arc profile and compared with other numerical results, which indicate good agreement, particularly for the shock position. A typical profile shape with shock converges in only 16 iteration steps, correct up to two decimal places requiring about 30 secs. of CPU time on a Burroughs B6700 computer system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iteration Step</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Stream</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Stream Velocity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iteration Scheme</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Profile Shape</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Das, T. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer-Verlag, 1965</subfield><subfield code="g">38(1981), 3-4 vom: Sept., Seite 169-181</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:1981</subfield><subfield code="g">number:3-4</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:169-181</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01176461</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4309</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">1981</subfield><subfield code="e">3-4</subfield><subfield code="c">09</subfield><subfield code="h">169-181</subfield></datafield></record></collection>
|
author |
Niyogi, P. |
spellingShingle |
Niyogi, P. ddc 530 misc Iteration Step misc Free Stream misc Free Stream Velocity misc Iteration Scheme misc Profile Shape Plane transonic solution with shock by direct iteration |
authorStr |
Niyogi, P. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129511676 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-5970 |
topic_title |
530 VZ Plane transonic solution with shock by direct iteration Iteration Step Free Stream Free Stream Velocity Iteration Scheme Profile Shape |
topic |
ddc 530 misc Iteration Step misc Free Stream misc Free Stream Velocity misc Iteration Scheme misc Profile Shape |
topic_unstemmed |
ddc 530 misc Iteration Step misc Free Stream misc Free Stream Velocity misc Iteration Scheme misc Profile Shape |
topic_browse |
ddc 530 misc Iteration Step misc Free Stream misc Free Stream Velocity misc Iteration Scheme misc Profile Shape |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta mechanica |
hierarchy_parent_id |
129511676 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Acta mechanica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129511676 (DE-600)210328-X (DE-576)014919141 |
title |
Plane transonic solution with shock by direct iteration |
ctrlnum |
(DE-627)OLC2030102555 (DE-He213)BF01176461-p |
title_full |
Plane transonic solution with shock by direct iteration |
author_sort |
Niyogi, P. |
journal |
Acta mechanica |
journalStr |
Acta mechanica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1981 |
contenttype_str_mv |
txt |
container_start_page |
169 |
author_browse |
Niyogi, P. Das, T. K. |
container_volume |
38 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Niyogi, P. |
doi_str_mv |
10.1007/BF01176461 |
dewey-full |
530 |
title_sort |
plane transonic solution with shock by direct iteration |
title_auth |
Plane transonic solution with shock by direct iteration |
abstract |
Summary Transonic reduced pressure distributions at thin symmetrical nonlifting profiles, with high subsonic free stream velocity are predicted by determining approximate solutions of the Oswatitsch integral equation by direct iteration scheme [1], which is extended here to include shocks. Converged solution with shock may be obtained if the starting solution contains a shock discontinuity or else, if with a continuous starting solution, the expansion shock which appearts at the accelerating sonic point be excluded at each iteration step. Computational results have been presented for a NACA 0012 profile and a parabolic arc profile and compared with other numerical results, which indicate good agreement, particularly for the shock position. A typical profile shape with shock converges in only 16 iteration steps, correct up to two decimal places requiring about 30 secs. of CPU time on a Burroughs B6700 computer system. © Springer-Verlag 1981 |
abstractGer |
Summary Transonic reduced pressure distributions at thin symmetrical nonlifting profiles, with high subsonic free stream velocity are predicted by determining approximate solutions of the Oswatitsch integral equation by direct iteration scheme [1], which is extended here to include shocks. Converged solution with shock may be obtained if the starting solution contains a shock discontinuity or else, if with a continuous starting solution, the expansion shock which appearts at the accelerating sonic point be excluded at each iteration step. Computational results have been presented for a NACA 0012 profile and a parabolic arc profile and compared with other numerical results, which indicate good agreement, particularly for the shock position. A typical profile shape with shock converges in only 16 iteration steps, correct up to two decimal places requiring about 30 secs. of CPU time on a Burroughs B6700 computer system. © Springer-Verlag 1981 |
abstract_unstemmed |
Summary Transonic reduced pressure distributions at thin symmetrical nonlifting profiles, with high subsonic free stream velocity are predicted by determining approximate solutions of the Oswatitsch integral equation by direct iteration scheme [1], which is extended here to include shocks. Converged solution with shock may be obtained if the starting solution contains a shock discontinuity or else, if with a continuous starting solution, the expansion shock which appearts at the accelerating sonic point be excluded at each iteration step. Computational results have been presented for a NACA 0012 profile and a parabolic arc profile and compared with other numerical results, which indicate good agreement, particularly for the shock position. A typical profile shape with shock converges in only 16 iteration steps, correct up to two decimal places requiring about 30 secs. of CPU time on a Burroughs B6700 computer system. © Springer-Verlag 1981 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_59 GBV_ILN_63 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2057 GBV_ILN_2333 GBV_ILN_4046 GBV_ILN_4309 GBV_ILN_4313 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4700 |
container_issue |
3-4 |
title_short |
Plane transonic solution with shock by direct iteration |
url |
https://doi.org/10.1007/BF01176461 |
remote_bool |
false |
author2 |
Das, T. K. |
author2Str |
Das, T. K. |
ppnlink |
129511676 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01176461 |
up_date |
2024-07-04T01:16:30.940Z |
_version_ |
1803609221041750016 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030102555</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502142945.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1981 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01176461</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030102555</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01176461-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Niyogi, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plane transonic solution with shock by direct iteration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1981</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1981</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary Transonic reduced pressure distributions at thin symmetrical nonlifting profiles, with high subsonic free stream velocity are predicted by determining approximate solutions of the Oswatitsch integral equation by direct iteration scheme [1], which is extended here to include shocks. Converged solution with shock may be obtained if the starting solution contains a shock discontinuity or else, if with a continuous starting solution, the expansion shock which appearts at the accelerating sonic point be excluded at each iteration step. Computational results have been presented for a NACA 0012 profile and a parabolic arc profile and compared with other numerical results, which indicate good agreement, particularly for the shock position. A typical profile shape with shock converges in only 16 iteration steps, correct up to two decimal places requiring about 30 secs. of CPU time on a Burroughs B6700 computer system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iteration Step</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Stream</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Stream Velocity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iteration Scheme</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Profile Shape</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Das, T. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer-Verlag, 1965</subfield><subfield code="g">38(1981), 3-4 vom: Sept., Seite 169-181</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:1981</subfield><subfield code="g">number:3-4</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:169-181</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01176461</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4309</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">1981</subfield><subfield code="e">3-4</subfield><subfield code="c">09</subfield><subfield code="h">169-181</subfield></datafield></record></collection>
|
score |
7.400939 |