Liquid sheet instability
Summary A linear instability analysis is presented for an inviscid liquid sheed emanated into an inviscid gas medium. The influence of Weber number and gas to liquid density ratio on the evolution of two and three dimensional disturbances of symmetrical and antisymmetrical type is studied. It is fou...
Ausführliche Beschreibung
Autor*in: |
Ibrahim, E. A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1998 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 1998 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta mechanica - Springer-Verlag, 1965, 131(1998), 3-4 vom: Sept., Seite 153-167 |
---|---|
Übergeordnetes Werk: |
volume:131 ; year:1998 ; number:3-4 ; month:09 ; pages:153-167 |
Links: |
---|
DOI / URN: |
10.1007/BF01177222 |
---|
Katalog-ID: |
OLC2030120367 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2030120367 | ||
003 | DE-627 | ||
005 | 20230502143050.0 | ||
007 | tu | ||
008 | 200820s1998 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF01177222 |2 doi | |
035 | |a (DE-627)OLC2030120367 | ||
035 | |a (DE-He213)BF01177222-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Ibrahim, E. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Liquid sheet instability |
264 | 1 | |c 1998 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 1998 | ||
520 | |a Summary A linear instability analysis is presented for an inviscid liquid sheed emanated into an inviscid gas medium. The influence of Weber number and gas to liquid density ratio on the evolution of two and three dimensional disturbances of symmetrical and antisymmetrical type is studied. It is found that two dimensional disturbances always dominate the instability process at low Weber number. When the Weber number is large, symmetrical three dimensional disturbances become more unstable than two dimensional ones for long waves. The effect of increasing the gas to liquid density ratio is to promote the dominance of long three dimensional symmetrical waves over their two dimensional counterpart. For antisymmetrical waves, two dimensional disturbances always prevail over three dimensional disturbances regardless of Weber number or gas to liquid density ratio especially for long waves. For short waves, both two and three dimensional disturbances grow at approximately the same rate. It is demonstrated that a critical Weber number exists, above which three dimensional disturbances become unstable. Furthermore, a finite wave number is necessary for the onset of three dimensional instability. The wave number range that leads to a higher growth of, symmetrical three dimensional disturbances than two dimensional ones is investigated. An explanation of the differences in the behavior of three dimensional symmetrical and antisymmetrical instabilities is provided. | ||
650 | 4 | |a Weber Number | |
650 | 4 | |a Linear Instability | |
650 | 4 | |a Wave Number Range | |
650 | 4 | |a Liquid Sheet | |
650 | 4 | |a Instability Analysis | |
700 | 1 | |a Akpan, E. T. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Acta mechanica |d Springer-Verlag, 1965 |g 131(1998), 3-4 vom: Sept., Seite 153-167 |w (DE-627)129511676 |w (DE-600)210328-X |w (DE-576)014919141 |x 0001-5970 |7 nnns |
773 | 1 | 8 | |g volume:131 |g year:1998 |g number:3-4 |g month:09 |g pages:153-167 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF01177222 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4316 | ||
912 | |a GBV_ILN_4319 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 131 |j 1998 |e 3-4 |c 09 |h 153-167 |
author_variant |
e a i ea eai e t a et eta |
---|---|
matchkey_str |
article:00015970:1998----::iudheis |
hierarchy_sort_str |
1998 |
publishDate |
1998 |
allfields |
10.1007/BF01177222 doi (DE-627)OLC2030120367 (DE-He213)BF01177222-p DE-627 ger DE-627 rakwb eng 530 VZ Ibrahim, E. A. verfasserin aut Liquid sheet instability 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1998 Summary A linear instability analysis is presented for an inviscid liquid sheed emanated into an inviscid gas medium. The influence of Weber number and gas to liquid density ratio on the evolution of two and three dimensional disturbances of symmetrical and antisymmetrical type is studied. It is found that two dimensional disturbances always dominate the instability process at low Weber number. When the Weber number is large, symmetrical three dimensional disturbances become more unstable than two dimensional ones for long waves. The effect of increasing the gas to liquid density ratio is to promote the dominance of long three dimensional symmetrical waves over their two dimensional counterpart. For antisymmetrical waves, two dimensional disturbances always prevail over three dimensional disturbances regardless of Weber number or gas to liquid density ratio especially for long waves. For short waves, both two and three dimensional disturbances grow at approximately the same rate. It is demonstrated that a critical Weber number exists, above which three dimensional disturbances become unstable. Furthermore, a finite wave number is necessary for the onset of three dimensional instability. The wave number range that leads to a higher growth of, symmetrical three dimensional disturbances than two dimensional ones is investigated. An explanation of the differences in the behavior of three dimensional symmetrical and antisymmetrical instabilities is provided. Weber Number Linear Instability Wave Number Range Liquid Sheet Instability Analysis Akpan, E. T. aut Enthalten in Acta mechanica Springer-Verlag, 1965 131(1998), 3-4 vom: Sept., Seite 153-167 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:131 year:1998 number:3-4 month:09 pages:153-167 https://doi.org/10.1007/BF01177222 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_59 GBV_ILN_62 GBV_ILN_63 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2057 GBV_ILN_2129 GBV_ILN_4046 GBV_ILN_4313 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 131 1998 3-4 09 153-167 |
spelling |
10.1007/BF01177222 doi (DE-627)OLC2030120367 (DE-He213)BF01177222-p DE-627 ger DE-627 rakwb eng 530 VZ Ibrahim, E. A. verfasserin aut Liquid sheet instability 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1998 Summary A linear instability analysis is presented for an inviscid liquid sheed emanated into an inviscid gas medium. The influence of Weber number and gas to liquid density ratio on the evolution of two and three dimensional disturbances of symmetrical and antisymmetrical type is studied. It is found that two dimensional disturbances always dominate the instability process at low Weber number. When the Weber number is large, symmetrical three dimensional disturbances become more unstable than two dimensional ones for long waves. The effect of increasing the gas to liquid density ratio is to promote the dominance of long three dimensional symmetrical waves over their two dimensional counterpart. For antisymmetrical waves, two dimensional disturbances always prevail over three dimensional disturbances regardless of Weber number or gas to liquid density ratio especially for long waves. For short waves, both two and three dimensional disturbances grow at approximately the same rate. It is demonstrated that a critical Weber number exists, above which three dimensional disturbances become unstable. Furthermore, a finite wave number is necessary for the onset of three dimensional instability. The wave number range that leads to a higher growth of, symmetrical three dimensional disturbances than two dimensional ones is investigated. An explanation of the differences in the behavior of three dimensional symmetrical and antisymmetrical instabilities is provided. Weber Number Linear Instability Wave Number Range Liquid Sheet Instability Analysis Akpan, E. T. aut Enthalten in Acta mechanica Springer-Verlag, 1965 131(1998), 3-4 vom: Sept., Seite 153-167 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:131 year:1998 number:3-4 month:09 pages:153-167 https://doi.org/10.1007/BF01177222 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_59 GBV_ILN_62 GBV_ILN_63 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2057 GBV_ILN_2129 GBV_ILN_4046 GBV_ILN_4313 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 131 1998 3-4 09 153-167 |
allfields_unstemmed |
10.1007/BF01177222 doi (DE-627)OLC2030120367 (DE-He213)BF01177222-p DE-627 ger DE-627 rakwb eng 530 VZ Ibrahim, E. A. verfasserin aut Liquid sheet instability 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1998 Summary A linear instability analysis is presented for an inviscid liquid sheed emanated into an inviscid gas medium. The influence of Weber number and gas to liquid density ratio on the evolution of two and three dimensional disturbances of symmetrical and antisymmetrical type is studied. It is found that two dimensional disturbances always dominate the instability process at low Weber number. When the Weber number is large, symmetrical three dimensional disturbances become more unstable than two dimensional ones for long waves. The effect of increasing the gas to liquid density ratio is to promote the dominance of long three dimensional symmetrical waves over their two dimensional counterpart. For antisymmetrical waves, two dimensional disturbances always prevail over three dimensional disturbances regardless of Weber number or gas to liquid density ratio especially for long waves. For short waves, both two and three dimensional disturbances grow at approximately the same rate. It is demonstrated that a critical Weber number exists, above which three dimensional disturbances become unstable. Furthermore, a finite wave number is necessary for the onset of three dimensional instability. The wave number range that leads to a higher growth of, symmetrical three dimensional disturbances than two dimensional ones is investigated. An explanation of the differences in the behavior of three dimensional symmetrical and antisymmetrical instabilities is provided. Weber Number Linear Instability Wave Number Range Liquid Sheet Instability Analysis Akpan, E. T. aut Enthalten in Acta mechanica Springer-Verlag, 1965 131(1998), 3-4 vom: Sept., Seite 153-167 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:131 year:1998 number:3-4 month:09 pages:153-167 https://doi.org/10.1007/BF01177222 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_59 GBV_ILN_62 GBV_ILN_63 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2057 GBV_ILN_2129 GBV_ILN_4046 GBV_ILN_4313 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 131 1998 3-4 09 153-167 |
allfieldsGer |
10.1007/BF01177222 doi (DE-627)OLC2030120367 (DE-He213)BF01177222-p DE-627 ger DE-627 rakwb eng 530 VZ Ibrahim, E. A. verfasserin aut Liquid sheet instability 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1998 Summary A linear instability analysis is presented for an inviscid liquid sheed emanated into an inviscid gas medium. The influence of Weber number and gas to liquid density ratio on the evolution of two and three dimensional disturbances of symmetrical and antisymmetrical type is studied. It is found that two dimensional disturbances always dominate the instability process at low Weber number. When the Weber number is large, symmetrical three dimensional disturbances become more unstable than two dimensional ones for long waves. The effect of increasing the gas to liquid density ratio is to promote the dominance of long three dimensional symmetrical waves over their two dimensional counterpart. For antisymmetrical waves, two dimensional disturbances always prevail over three dimensional disturbances regardless of Weber number or gas to liquid density ratio especially for long waves. For short waves, both two and three dimensional disturbances grow at approximately the same rate. It is demonstrated that a critical Weber number exists, above which three dimensional disturbances become unstable. Furthermore, a finite wave number is necessary for the onset of three dimensional instability. The wave number range that leads to a higher growth of, symmetrical three dimensional disturbances than two dimensional ones is investigated. An explanation of the differences in the behavior of three dimensional symmetrical and antisymmetrical instabilities is provided. Weber Number Linear Instability Wave Number Range Liquid Sheet Instability Analysis Akpan, E. T. aut Enthalten in Acta mechanica Springer-Verlag, 1965 131(1998), 3-4 vom: Sept., Seite 153-167 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:131 year:1998 number:3-4 month:09 pages:153-167 https://doi.org/10.1007/BF01177222 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_59 GBV_ILN_62 GBV_ILN_63 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2057 GBV_ILN_2129 GBV_ILN_4046 GBV_ILN_4313 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 131 1998 3-4 09 153-167 |
allfieldsSound |
10.1007/BF01177222 doi (DE-627)OLC2030120367 (DE-He213)BF01177222-p DE-627 ger DE-627 rakwb eng 530 VZ Ibrahim, E. A. verfasserin aut Liquid sheet instability 1998 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 1998 Summary A linear instability analysis is presented for an inviscid liquid sheed emanated into an inviscid gas medium. The influence of Weber number and gas to liquid density ratio on the evolution of two and three dimensional disturbances of symmetrical and antisymmetrical type is studied. It is found that two dimensional disturbances always dominate the instability process at low Weber number. When the Weber number is large, symmetrical three dimensional disturbances become more unstable than two dimensional ones for long waves. The effect of increasing the gas to liquid density ratio is to promote the dominance of long three dimensional symmetrical waves over their two dimensional counterpart. For antisymmetrical waves, two dimensional disturbances always prevail over three dimensional disturbances regardless of Weber number or gas to liquid density ratio especially for long waves. For short waves, both two and three dimensional disturbances grow at approximately the same rate. It is demonstrated that a critical Weber number exists, above which three dimensional disturbances become unstable. Furthermore, a finite wave number is necessary for the onset of three dimensional instability. The wave number range that leads to a higher growth of, symmetrical three dimensional disturbances than two dimensional ones is investigated. An explanation of the differences in the behavior of three dimensional symmetrical and antisymmetrical instabilities is provided. Weber Number Linear Instability Wave Number Range Liquid Sheet Instability Analysis Akpan, E. T. aut Enthalten in Acta mechanica Springer-Verlag, 1965 131(1998), 3-4 vom: Sept., Seite 153-167 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:131 year:1998 number:3-4 month:09 pages:153-167 https://doi.org/10.1007/BF01177222 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_59 GBV_ILN_62 GBV_ILN_63 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2057 GBV_ILN_2129 GBV_ILN_4046 GBV_ILN_4313 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 AR 131 1998 3-4 09 153-167 |
language |
English |
source |
Enthalten in Acta mechanica 131(1998), 3-4 vom: Sept., Seite 153-167 volume:131 year:1998 number:3-4 month:09 pages:153-167 |
sourceStr |
Enthalten in Acta mechanica 131(1998), 3-4 vom: Sept., Seite 153-167 volume:131 year:1998 number:3-4 month:09 pages:153-167 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Weber Number Linear Instability Wave Number Range Liquid Sheet Instability Analysis |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Acta mechanica |
authorswithroles_txt_mv |
Ibrahim, E. A. @@aut@@ Akpan, E. T. @@aut@@ |
publishDateDaySort_date |
1998-09-01T00:00:00Z |
hierarchy_top_id |
129511676 |
dewey-sort |
3530 |
id |
OLC2030120367 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030120367</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502143050.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1998 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01177222</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030120367</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01177222-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ibrahim, E. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Liquid sheet instability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1998</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1998</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary A linear instability analysis is presented for an inviscid liquid sheed emanated into an inviscid gas medium. The influence of Weber number and gas to liquid density ratio on the evolution of two and three dimensional disturbances of symmetrical and antisymmetrical type is studied. It is found that two dimensional disturbances always dominate the instability process at low Weber number. When the Weber number is large, symmetrical three dimensional disturbances become more unstable than two dimensional ones for long waves. The effect of increasing the gas to liquid density ratio is to promote the dominance of long three dimensional symmetrical waves over their two dimensional counterpart. For antisymmetrical waves, two dimensional disturbances always prevail over three dimensional disturbances regardless of Weber number or gas to liquid density ratio especially for long waves. For short waves, both two and three dimensional disturbances grow at approximately the same rate. It is demonstrated that a critical Weber number exists, above which three dimensional disturbances become unstable. Furthermore, a finite wave number is necessary for the onset of three dimensional instability. The wave number range that leads to a higher growth of, symmetrical three dimensional disturbances than two dimensional ones is investigated. An explanation of the differences in the behavior of three dimensional symmetrical and antisymmetrical instabilities is provided.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weber Number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear Instability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave Number Range</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liquid Sheet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instability Analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Akpan, E. T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer-Verlag, 1965</subfield><subfield code="g">131(1998), 3-4 vom: Sept., Seite 153-167</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:131</subfield><subfield code="g">year:1998</subfield><subfield code="g">number:3-4</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:153-167</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01177222</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">131</subfield><subfield code="j">1998</subfield><subfield code="e">3-4</subfield><subfield code="c">09</subfield><subfield code="h">153-167</subfield></datafield></record></collection>
|
author |
Ibrahim, E. A. |
spellingShingle |
Ibrahim, E. A. ddc 530 misc Weber Number misc Linear Instability misc Wave Number Range misc Liquid Sheet misc Instability Analysis Liquid sheet instability |
authorStr |
Ibrahim, E. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129511676 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-5970 |
topic_title |
530 VZ Liquid sheet instability Weber Number Linear Instability Wave Number Range Liquid Sheet Instability Analysis |
topic |
ddc 530 misc Weber Number misc Linear Instability misc Wave Number Range misc Liquid Sheet misc Instability Analysis |
topic_unstemmed |
ddc 530 misc Weber Number misc Linear Instability misc Wave Number Range misc Liquid Sheet misc Instability Analysis |
topic_browse |
ddc 530 misc Weber Number misc Linear Instability misc Wave Number Range misc Liquid Sheet misc Instability Analysis |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta mechanica |
hierarchy_parent_id |
129511676 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Acta mechanica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129511676 (DE-600)210328-X (DE-576)014919141 |
title |
Liquid sheet instability |
ctrlnum |
(DE-627)OLC2030120367 (DE-He213)BF01177222-p |
title_full |
Liquid sheet instability |
author_sort |
Ibrahim, E. A. |
journal |
Acta mechanica |
journalStr |
Acta mechanica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1998 |
contenttype_str_mv |
txt |
container_start_page |
153 |
author_browse |
Ibrahim, E. A. Akpan, E. T. |
container_volume |
131 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Ibrahim, E. A. |
doi_str_mv |
10.1007/BF01177222 |
dewey-full |
530 |
title_sort |
liquid sheet instability |
title_auth |
Liquid sheet instability |
abstract |
Summary A linear instability analysis is presented for an inviscid liquid sheed emanated into an inviscid gas medium. The influence of Weber number and gas to liquid density ratio on the evolution of two and three dimensional disturbances of symmetrical and antisymmetrical type is studied. It is found that two dimensional disturbances always dominate the instability process at low Weber number. When the Weber number is large, symmetrical three dimensional disturbances become more unstable than two dimensional ones for long waves. The effect of increasing the gas to liquid density ratio is to promote the dominance of long three dimensional symmetrical waves over their two dimensional counterpart. For antisymmetrical waves, two dimensional disturbances always prevail over three dimensional disturbances regardless of Weber number or gas to liquid density ratio especially for long waves. For short waves, both two and three dimensional disturbances grow at approximately the same rate. It is demonstrated that a critical Weber number exists, above which three dimensional disturbances become unstable. Furthermore, a finite wave number is necessary for the onset of three dimensional instability. The wave number range that leads to a higher growth of, symmetrical three dimensional disturbances than two dimensional ones is investigated. An explanation of the differences in the behavior of three dimensional symmetrical and antisymmetrical instabilities is provided. © Springer-Verlag 1998 |
abstractGer |
Summary A linear instability analysis is presented for an inviscid liquid sheed emanated into an inviscid gas medium. The influence of Weber number and gas to liquid density ratio on the evolution of two and three dimensional disturbances of symmetrical and antisymmetrical type is studied. It is found that two dimensional disturbances always dominate the instability process at low Weber number. When the Weber number is large, symmetrical three dimensional disturbances become more unstable than two dimensional ones for long waves. The effect of increasing the gas to liquid density ratio is to promote the dominance of long three dimensional symmetrical waves over their two dimensional counterpart. For antisymmetrical waves, two dimensional disturbances always prevail over three dimensional disturbances regardless of Weber number or gas to liquid density ratio especially for long waves. For short waves, both two and three dimensional disturbances grow at approximately the same rate. It is demonstrated that a critical Weber number exists, above which three dimensional disturbances become unstable. Furthermore, a finite wave number is necessary for the onset of three dimensional instability. The wave number range that leads to a higher growth of, symmetrical three dimensional disturbances than two dimensional ones is investigated. An explanation of the differences in the behavior of three dimensional symmetrical and antisymmetrical instabilities is provided. © Springer-Verlag 1998 |
abstract_unstemmed |
Summary A linear instability analysis is presented for an inviscid liquid sheed emanated into an inviscid gas medium. The influence of Weber number and gas to liquid density ratio on the evolution of two and three dimensional disturbances of symmetrical and antisymmetrical type is studied. It is found that two dimensional disturbances always dominate the instability process at low Weber number. When the Weber number is large, symmetrical three dimensional disturbances become more unstable than two dimensional ones for long waves. The effect of increasing the gas to liquid density ratio is to promote the dominance of long three dimensional symmetrical waves over their two dimensional counterpart. For antisymmetrical waves, two dimensional disturbances always prevail over three dimensional disturbances regardless of Weber number or gas to liquid density ratio especially for long waves. For short waves, both two and three dimensional disturbances grow at approximately the same rate. It is demonstrated that a critical Weber number exists, above which three dimensional disturbances become unstable. Furthermore, a finite wave number is necessary for the onset of three dimensional instability. The wave number range that leads to a higher growth of, symmetrical three dimensional disturbances than two dimensional ones is investigated. An explanation of the differences in the behavior of three dimensional symmetrical and antisymmetrical instabilities is provided. © Springer-Verlag 1998 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_59 GBV_ILN_62 GBV_ILN_63 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2027 GBV_ILN_2057 GBV_ILN_2129 GBV_ILN_4046 GBV_ILN_4313 GBV_ILN_4316 GBV_ILN_4319 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
3-4 |
title_short |
Liquid sheet instability |
url |
https://doi.org/10.1007/BF01177222 |
remote_bool |
false |
author2 |
Akpan, E. T. |
author2Str |
Akpan, E. T. |
ppnlink |
129511676 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF01177222 |
up_date |
2024-07-04T01:19:23.779Z |
_version_ |
1803609402276577280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030120367</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502143050.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s1998 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF01177222</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030120367</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF01177222-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ibrahim, E. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Liquid sheet instability</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1998</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 1998</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary A linear instability analysis is presented for an inviscid liquid sheed emanated into an inviscid gas medium. The influence of Weber number and gas to liquid density ratio on the evolution of two and three dimensional disturbances of symmetrical and antisymmetrical type is studied. It is found that two dimensional disturbances always dominate the instability process at low Weber number. When the Weber number is large, symmetrical three dimensional disturbances become more unstable than two dimensional ones for long waves. The effect of increasing the gas to liquid density ratio is to promote the dominance of long three dimensional symmetrical waves over their two dimensional counterpart. For antisymmetrical waves, two dimensional disturbances always prevail over three dimensional disturbances regardless of Weber number or gas to liquid density ratio especially for long waves. For short waves, both two and three dimensional disturbances grow at approximately the same rate. It is demonstrated that a critical Weber number exists, above which three dimensional disturbances become unstable. Furthermore, a finite wave number is necessary for the onset of three dimensional instability. The wave number range that leads to a higher growth of, symmetrical three dimensional disturbances than two dimensional ones is investigated. An explanation of the differences in the behavior of three dimensional symmetrical and antisymmetrical instabilities is provided.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weber Number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear Instability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave Number Range</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liquid Sheet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instability Analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Akpan, E. T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer-Verlag, 1965</subfield><subfield code="g">131(1998), 3-4 vom: Sept., Seite 153-167</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:131</subfield><subfield code="g">year:1998</subfield><subfield code="g">number:3-4</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:153-167</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF01177222</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4319</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">131</subfield><subfield code="j">1998</subfield><subfield code="e">3-4</subfield><subfield code="c">09</subfield><subfield code="h">153-167</subfield></datafield></record></collection>
|
score |
7.4022045 |