Viscous nonlinearity in central difference and Newmark integration schemes
Abstract Of the various implicit and explicit time integration methods the central difference method and Newmark’s method are the most popular ones to solve Cauchy’s equation of motion in structural solid dynamics. While in their standard forms elastic and viscous linearity are presumed, they are ap...
Ausführliche Beschreibung
Autor*in: |
Winkel, Benjamin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2009 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 2009 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta mechanica - Springer Vienna, 1965, 209(2009), 3-4 vom: 19. Apr., Seite 179-186 |
---|---|
Übergeordnetes Werk: |
volume:209 ; year:2009 ; number:3-4 ; day:19 ; month:04 ; pages:179-186 |
Links: |
---|
DOI / URN: |
10.1007/s00707-009-0176-1 |
---|
Katalog-ID: |
OLC2030132632 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2030132632 | ||
003 | DE-627 | ||
005 | 20230502143152.0 | ||
007 | tu | ||
008 | 200820s2009 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00707-009-0176-1 |2 doi | |
035 | |a (DE-627)OLC2030132632 | ||
035 | |a (DE-He213)s00707-009-0176-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Winkel, Benjamin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Viscous nonlinearity in central difference and Newmark integration schemes |
264 | 1 | |c 2009 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2009 | ||
520 | |a Abstract Of the various implicit and explicit time integration methods the central difference method and Newmark’s method are the most popular ones to solve Cauchy’s equation of motion in structural solid dynamics. While in their standard forms elastic and viscous linearity are presumed, they are applicable to nonlinear elastic materials with little alterations. However, the case of viscous nonlinearity is rarely investigated, although it demands some algorithmic modifications of the methods in concern. In the context of a finite element spatial discretization we will provide a description of those emended integration schemes and illustrate them exemplarily. | ||
650 | 4 | |a Previous Time Step | |
650 | 4 | |a Step Approximation | |
650 | 4 | |a Newmark Method | |
650 | 4 | |a Raphson Iteration | |
650 | 4 | |a Central Difference Method | |
773 | 0 | 8 | |i Enthalten in |t Acta mechanica |d Springer Vienna, 1965 |g 209(2009), 3-4 vom: 19. Apr., Seite 179-186 |w (DE-627)129511676 |w (DE-600)210328-X |w (DE-576)014919141 |x 0001-5970 |7 nnns |
773 | 1 | 8 | |g volume:209 |g year:2009 |g number:3-4 |g day:19 |g month:04 |g pages:179-186 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00707-009-0176-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 209 |j 2009 |e 3-4 |b 19 |c 04 |h 179-186 |
author_variant |
b w bw |
---|---|
matchkey_str |
article:00015970:2009----::icunnierticnrlifrnennwak |
hierarchy_sort_str |
2009 |
publishDate |
2009 |
allfields |
10.1007/s00707-009-0176-1 doi (DE-627)OLC2030132632 (DE-He213)s00707-009-0176-1-p DE-627 ger DE-627 rakwb eng 530 VZ Winkel, Benjamin verfasserin aut Viscous nonlinearity in central difference and Newmark integration schemes 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2009 Abstract Of the various implicit and explicit time integration methods the central difference method and Newmark’s method are the most popular ones to solve Cauchy’s equation of motion in structural solid dynamics. While in their standard forms elastic and viscous linearity are presumed, they are applicable to nonlinear elastic materials with little alterations. However, the case of viscous nonlinearity is rarely investigated, although it demands some algorithmic modifications of the methods in concern. In the context of a finite element spatial discretization we will provide a description of those emended integration schemes and illustrate them exemplarily. Previous Time Step Step Approximation Newmark Method Raphson Iteration Central Difference Method Enthalten in Acta mechanica Springer Vienna, 1965 209(2009), 3-4 vom: 19. Apr., Seite 179-186 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:209 year:2009 number:3-4 day:19 month:04 pages:179-186 https://doi.org/10.1007/s00707-009-0176-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2409 GBV_ILN_4700 AR 209 2009 3-4 19 04 179-186 |
spelling |
10.1007/s00707-009-0176-1 doi (DE-627)OLC2030132632 (DE-He213)s00707-009-0176-1-p DE-627 ger DE-627 rakwb eng 530 VZ Winkel, Benjamin verfasserin aut Viscous nonlinearity in central difference and Newmark integration schemes 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2009 Abstract Of the various implicit and explicit time integration methods the central difference method and Newmark’s method are the most popular ones to solve Cauchy’s equation of motion in structural solid dynamics. While in their standard forms elastic and viscous linearity are presumed, they are applicable to nonlinear elastic materials with little alterations. However, the case of viscous nonlinearity is rarely investigated, although it demands some algorithmic modifications of the methods in concern. In the context of a finite element spatial discretization we will provide a description of those emended integration schemes and illustrate them exemplarily. Previous Time Step Step Approximation Newmark Method Raphson Iteration Central Difference Method Enthalten in Acta mechanica Springer Vienna, 1965 209(2009), 3-4 vom: 19. Apr., Seite 179-186 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:209 year:2009 number:3-4 day:19 month:04 pages:179-186 https://doi.org/10.1007/s00707-009-0176-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2409 GBV_ILN_4700 AR 209 2009 3-4 19 04 179-186 |
allfields_unstemmed |
10.1007/s00707-009-0176-1 doi (DE-627)OLC2030132632 (DE-He213)s00707-009-0176-1-p DE-627 ger DE-627 rakwb eng 530 VZ Winkel, Benjamin verfasserin aut Viscous nonlinearity in central difference and Newmark integration schemes 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2009 Abstract Of the various implicit and explicit time integration methods the central difference method and Newmark’s method are the most popular ones to solve Cauchy’s equation of motion in structural solid dynamics. While in their standard forms elastic and viscous linearity are presumed, they are applicable to nonlinear elastic materials with little alterations. However, the case of viscous nonlinearity is rarely investigated, although it demands some algorithmic modifications of the methods in concern. In the context of a finite element spatial discretization we will provide a description of those emended integration schemes and illustrate them exemplarily. Previous Time Step Step Approximation Newmark Method Raphson Iteration Central Difference Method Enthalten in Acta mechanica Springer Vienna, 1965 209(2009), 3-4 vom: 19. Apr., Seite 179-186 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:209 year:2009 number:3-4 day:19 month:04 pages:179-186 https://doi.org/10.1007/s00707-009-0176-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2409 GBV_ILN_4700 AR 209 2009 3-4 19 04 179-186 |
allfieldsGer |
10.1007/s00707-009-0176-1 doi (DE-627)OLC2030132632 (DE-He213)s00707-009-0176-1-p DE-627 ger DE-627 rakwb eng 530 VZ Winkel, Benjamin verfasserin aut Viscous nonlinearity in central difference and Newmark integration schemes 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2009 Abstract Of the various implicit and explicit time integration methods the central difference method and Newmark’s method are the most popular ones to solve Cauchy’s equation of motion in structural solid dynamics. While in their standard forms elastic and viscous linearity are presumed, they are applicable to nonlinear elastic materials with little alterations. However, the case of viscous nonlinearity is rarely investigated, although it demands some algorithmic modifications of the methods in concern. In the context of a finite element spatial discretization we will provide a description of those emended integration schemes and illustrate them exemplarily. Previous Time Step Step Approximation Newmark Method Raphson Iteration Central Difference Method Enthalten in Acta mechanica Springer Vienna, 1965 209(2009), 3-4 vom: 19. Apr., Seite 179-186 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:209 year:2009 number:3-4 day:19 month:04 pages:179-186 https://doi.org/10.1007/s00707-009-0176-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2409 GBV_ILN_4700 AR 209 2009 3-4 19 04 179-186 |
allfieldsSound |
10.1007/s00707-009-0176-1 doi (DE-627)OLC2030132632 (DE-He213)s00707-009-0176-1-p DE-627 ger DE-627 rakwb eng 530 VZ Winkel, Benjamin verfasserin aut Viscous nonlinearity in central difference and Newmark integration schemes 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2009 Abstract Of the various implicit and explicit time integration methods the central difference method and Newmark’s method are the most popular ones to solve Cauchy’s equation of motion in structural solid dynamics. While in their standard forms elastic and viscous linearity are presumed, they are applicable to nonlinear elastic materials with little alterations. However, the case of viscous nonlinearity is rarely investigated, although it demands some algorithmic modifications of the methods in concern. In the context of a finite element spatial discretization we will provide a description of those emended integration schemes and illustrate them exemplarily. Previous Time Step Step Approximation Newmark Method Raphson Iteration Central Difference Method Enthalten in Acta mechanica Springer Vienna, 1965 209(2009), 3-4 vom: 19. Apr., Seite 179-186 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:209 year:2009 number:3-4 day:19 month:04 pages:179-186 https://doi.org/10.1007/s00707-009-0176-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2409 GBV_ILN_4700 AR 209 2009 3-4 19 04 179-186 |
language |
English |
source |
Enthalten in Acta mechanica 209(2009), 3-4 vom: 19. Apr., Seite 179-186 volume:209 year:2009 number:3-4 day:19 month:04 pages:179-186 |
sourceStr |
Enthalten in Acta mechanica 209(2009), 3-4 vom: 19. Apr., Seite 179-186 volume:209 year:2009 number:3-4 day:19 month:04 pages:179-186 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Previous Time Step Step Approximation Newmark Method Raphson Iteration Central Difference Method |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Acta mechanica |
authorswithroles_txt_mv |
Winkel, Benjamin @@aut@@ |
publishDateDaySort_date |
2009-04-19T00:00:00Z |
hierarchy_top_id |
129511676 |
dewey-sort |
3530 |
id |
OLC2030132632 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030132632</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502143152.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2009 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00707-009-0176-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030132632</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00707-009-0176-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Winkel, Benjamin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Viscous nonlinearity in central difference and Newmark integration schemes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Of the various implicit and explicit time integration methods the central difference method and Newmark’s method are the most popular ones to solve Cauchy’s equation of motion in structural solid dynamics. While in their standard forms elastic and viscous linearity are presumed, they are applicable to nonlinear elastic materials with little alterations. However, the case of viscous nonlinearity is rarely investigated, although it demands some algorithmic modifications of the methods in concern. In the context of a finite element spatial discretization we will provide a description of those emended integration schemes and illustrate them exemplarily.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Previous Time Step</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Step Approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Newmark Method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Raphson Iteration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Central Difference Method</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer Vienna, 1965</subfield><subfield code="g">209(2009), 3-4 vom: 19. Apr., Seite 179-186</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:209</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:19</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:179-186</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00707-009-0176-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">209</subfield><subfield code="j">2009</subfield><subfield code="e">3-4</subfield><subfield code="b">19</subfield><subfield code="c">04</subfield><subfield code="h">179-186</subfield></datafield></record></collection>
|
author |
Winkel, Benjamin |
spellingShingle |
Winkel, Benjamin ddc 530 misc Previous Time Step misc Step Approximation misc Newmark Method misc Raphson Iteration misc Central Difference Method Viscous nonlinearity in central difference and Newmark integration schemes |
authorStr |
Winkel, Benjamin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129511676 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-5970 |
topic_title |
530 VZ Viscous nonlinearity in central difference and Newmark integration schemes Previous Time Step Step Approximation Newmark Method Raphson Iteration Central Difference Method |
topic |
ddc 530 misc Previous Time Step misc Step Approximation misc Newmark Method misc Raphson Iteration misc Central Difference Method |
topic_unstemmed |
ddc 530 misc Previous Time Step misc Step Approximation misc Newmark Method misc Raphson Iteration misc Central Difference Method |
topic_browse |
ddc 530 misc Previous Time Step misc Step Approximation misc Newmark Method misc Raphson Iteration misc Central Difference Method |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta mechanica |
hierarchy_parent_id |
129511676 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Acta mechanica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129511676 (DE-600)210328-X (DE-576)014919141 |
title |
Viscous nonlinearity in central difference and Newmark integration schemes |
ctrlnum |
(DE-627)OLC2030132632 (DE-He213)s00707-009-0176-1-p |
title_full |
Viscous nonlinearity in central difference and Newmark integration schemes |
author_sort |
Winkel, Benjamin |
journal |
Acta mechanica |
journalStr |
Acta mechanica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2009 |
contenttype_str_mv |
txt |
container_start_page |
179 |
author_browse |
Winkel, Benjamin |
container_volume |
209 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Winkel, Benjamin |
doi_str_mv |
10.1007/s00707-009-0176-1 |
dewey-full |
530 |
title_sort |
viscous nonlinearity in central difference and newmark integration schemes |
title_auth |
Viscous nonlinearity in central difference and Newmark integration schemes |
abstract |
Abstract Of the various implicit and explicit time integration methods the central difference method and Newmark’s method are the most popular ones to solve Cauchy’s equation of motion in structural solid dynamics. While in their standard forms elastic and viscous linearity are presumed, they are applicable to nonlinear elastic materials with little alterations. However, the case of viscous nonlinearity is rarely investigated, although it demands some algorithmic modifications of the methods in concern. In the context of a finite element spatial discretization we will provide a description of those emended integration schemes and illustrate them exemplarily. © Springer-Verlag 2009 |
abstractGer |
Abstract Of the various implicit and explicit time integration methods the central difference method and Newmark’s method are the most popular ones to solve Cauchy’s equation of motion in structural solid dynamics. While in their standard forms elastic and viscous linearity are presumed, they are applicable to nonlinear elastic materials with little alterations. However, the case of viscous nonlinearity is rarely investigated, although it demands some algorithmic modifications of the methods in concern. In the context of a finite element spatial discretization we will provide a description of those emended integration schemes and illustrate them exemplarily. © Springer-Verlag 2009 |
abstract_unstemmed |
Abstract Of the various implicit and explicit time integration methods the central difference method and Newmark’s method are the most popular ones to solve Cauchy’s equation of motion in structural solid dynamics. While in their standard forms elastic and viscous linearity are presumed, they are applicable to nonlinear elastic materials with little alterations. However, the case of viscous nonlinearity is rarely investigated, although it demands some algorithmic modifications of the methods in concern. In the context of a finite element spatial discretization we will provide a description of those emended integration schemes and illustrate them exemplarily. © Springer-Verlag 2009 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_2409 GBV_ILN_4700 |
container_issue |
3-4 |
title_short |
Viscous nonlinearity in central difference and Newmark integration schemes |
url |
https://doi.org/10.1007/s00707-009-0176-1 |
remote_bool |
false |
ppnlink |
129511676 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00707-009-0176-1 |
up_date |
2024-07-04T01:21:31.732Z |
_version_ |
1803609536443973632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030132632</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502143152.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2009 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00707-009-0176-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030132632</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00707-009-0176-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Winkel, Benjamin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Viscous nonlinearity in central difference and Newmark integration schemes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Of the various implicit and explicit time integration methods the central difference method and Newmark’s method are the most popular ones to solve Cauchy’s equation of motion in structural solid dynamics. While in their standard forms elastic and viscous linearity are presumed, they are applicable to nonlinear elastic materials with little alterations. However, the case of viscous nonlinearity is rarely investigated, although it demands some algorithmic modifications of the methods in concern. In the context of a finite element spatial discretization we will provide a description of those emended integration schemes and illustrate them exemplarily.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Previous Time Step</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Step Approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Newmark Method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Raphson Iteration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Central Difference Method</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer Vienna, 1965</subfield><subfield code="g">209(2009), 3-4 vom: 19. Apr., Seite 179-186</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:209</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:19</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:179-186</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00707-009-0176-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">209</subfield><subfield code="j">2009</subfield><subfield code="e">3-4</subfield><subfield code="b">19</subfield><subfield code="c">04</subfield><subfield code="h">179-186</subfield></datafield></record></collection>
|
score |
7.40166 |