Nonlinear dynamic stability of laminated composite shells integrated with piezoelectric layers in thermal environment
Abstract This paper reports the nonlinear dynamic stability characteristics of laminated composite cylindrical (CYL) and spherical (SPH) shells integrated with piezoelectric layers using the finite element method. The shells are subjected to a thermal environment in addition to the in-plane periodic...
Ausführliche Beschreibung
Autor*in: |
Pradyumna, S. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta mechanica - Springer Vienna, 1965, 218(2010), 3-4 vom: 25. Dez., Seite 295-308 |
---|---|
Übergeordnetes Werk: |
volume:218 ; year:2010 ; number:3-4 ; day:25 ; month:12 ; pages:295-308 |
Links: |
---|
DOI / URN: |
10.1007/s00707-010-0424-4 |
---|
Katalog-ID: |
OLC2030134899 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2030134899 | ||
003 | DE-627 | ||
005 | 20230502143208.0 | ||
007 | tu | ||
008 | 200820s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00707-010-0424-4 |2 doi | |
035 | |a (DE-627)OLC2030134899 | ||
035 | |a (DE-He213)s00707-010-0424-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Pradyumna, S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nonlinear dynamic stability of laminated composite shells integrated with piezoelectric layers in thermal environment |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2010 | ||
520 | |a Abstract This paper reports the nonlinear dynamic stability characteristics of laminated composite cylindrical (CYL) and spherical (SPH) shells integrated with piezoelectric layers using the finite element method. The shells are subjected to a thermal environment in addition to the in-plane periodic load and the electric load. The theoretical formulation considers Sanders’ approximation for doubly curved shells, and von Kármán type nonlinear strains are incorporated into the first-order shear deformation theory (FSDT). The formulation includes the effects of transverse shear, in-plane and rotatory inertia. The in-plane periodic load is taken as the parametric excitation in the governing equation. The nonlinear matrix amplitude equation is obtained by employing Galerkin’s method. The correctness of the formulation is established by comparing the authors’ results with those available in the published literature. Detailed parametric studies are carried out to investigate the effects of different parameters on the dynamic stability characteristics of laminated composite shells. | ||
650 | 4 | |a Cylindrical Shell | |
650 | 4 | |a Dynamic Stability | |
650 | 4 | |a Spherical Shell | |
650 | 4 | |a Piezoelectric Layer | |
650 | 4 | |a Laminate Composite Plate | |
700 | 1 | |a Gupta, Abhishek |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Acta mechanica |d Springer Vienna, 1965 |g 218(2010), 3-4 vom: 25. Dez., Seite 295-308 |w (DE-627)129511676 |w (DE-600)210328-X |w (DE-576)014919141 |x 0001-5970 |7 nnns |
773 | 1 | 8 | |g volume:218 |g year:2010 |g number:3-4 |g day:25 |g month:12 |g pages:295-308 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00707-010-0424-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 218 |j 2010 |e 3-4 |b 25 |c 12 |h 295-308 |
author_variant |
s p sp a g ag |
---|---|
matchkey_str |
article:00015970:2010----::olnadnmctbltolmntdopstselitgaewtpeolcrc |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1007/s00707-010-0424-4 doi (DE-627)OLC2030134899 (DE-He213)s00707-010-0424-4-p DE-627 ger DE-627 rakwb eng 530 VZ Pradyumna, S. verfasserin aut Nonlinear dynamic stability of laminated composite shells integrated with piezoelectric layers in thermal environment 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract This paper reports the nonlinear dynamic stability characteristics of laminated composite cylindrical (CYL) and spherical (SPH) shells integrated with piezoelectric layers using the finite element method. The shells are subjected to a thermal environment in addition to the in-plane periodic load and the electric load. The theoretical formulation considers Sanders’ approximation for doubly curved shells, and von Kármán type nonlinear strains are incorporated into the first-order shear deformation theory (FSDT). The formulation includes the effects of transverse shear, in-plane and rotatory inertia. The in-plane periodic load is taken as the parametric excitation in the governing equation. The nonlinear matrix amplitude equation is obtained by employing Galerkin’s method. The correctness of the formulation is established by comparing the authors’ results with those available in the published literature. Detailed parametric studies are carried out to investigate the effects of different parameters on the dynamic stability characteristics of laminated composite shells. Cylindrical Shell Dynamic Stability Spherical Shell Piezoelectric Layer Laminate Composite Plate Gupta, Abhishek aut Enthalten in Acta mechanica Springer Vienna, 1965 218(2010), 3-4 vom: 25. Dez., Seite 295-308 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:218 year:2010 number:3-4 day:25 month:12 pages:295-308 https://doi.org/10.1007/s00707-010-0424-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_4700 AR 218 2010 3-4 25 12 295-308 |
spelling |
10.1007/s00707-010-0424-4 doi (DE-627)OLC2030134899 (DE-He213)s00707-010-0424-4-p DE-627 ger DE-627 rakwb eng 530 VZ Pradyumna, S. verfasserin aut Nonlinear dynamic stability of laminated composite shells integrated with piezoelectric layers in thermal environment 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract This paper reports the nonlinear dynamic stability characteristics of laminated composite cylindrical (CYL) and spherical (SPH) shells integrated with piezoelectric layers using the finite element method. The shells are subjected to a thermal environment in addition to the in-plane periodic load and the electric load. The theoretical formulation considers Sanders’ approximation for doubly curved shells, and von Kármán type nonlinear strains are incorporated into the first-order shear deformation theory (FSDT). The formulation includes the effects of transverse shear, in-plane and rotatory inertia. The in-plane periodic load is taken as the parametric excitation in the governing equation. The nonlinear matrix amplitude equation is obtained by employing Galerkin’s method. The correctness of the formulation is established by comparing the authors’ results with those available in the published literature. Detailed parametric studies are carried out to investigate the effects of different parameters on the dynamic stability characteristics of laminated composite shells. Cylindrical Shell Dynamic Stability Spherical Shell Piezoelectric Layer Laminate Composite Plate Gupta, Abhishek aut Enthalten in Acta mechanica Springer Vienna, 1965 218(2010), 3-4 vom: 25. Dez., Seite 295-308 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:218 year:2010 number:3-4 day:25 month:12 pages:295-308 https://doi.org/10.1007/s00707-010-0424-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_4700 AR 218 2010 3-4 25 12 295-308 |
allfields_unstemmed |
10.1007/s00707-010-0424-4 doi (DE-627)OLC2030134899 (DE-He213)s00707-010-0424-4-p DE-627 ger DE-627 rakwb eng 530 VZ Pradyumna, S. verfasserin aut Nonlinear dynamic stability of laminated composite shells integrated with piezoelectric layers in thermal environment 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract This paper reports the nonlinear dynamic stability characteristics of laminated composite cylindrical (CYL) and spherical (SPH) shells integrated with piezoelectric layers using the finite element method. The shells are subjected to a thermal environment in addition to the in-plane periodic load and the electric load. The theoretical formulation considers Sanders’ approximation for doubly curved shells, and von Kármán type nonlinear strains are incorporated into the first-order shear deformation theory (FSDT). The formulation includes the effects of transverse shear, in-plane and rotatory inertia. The in-plane periodic load is taken as the parametric excitation in the governing equation. The nonlinear matrix amplitude equation is obtained by employing Galerkin’s method. The correctness of the formulation is established by comparing the authors’ results with those available in the published literature. Detailed parametric studies are carried out to investigate the effects of different parameters on the dynamic stability characteristics of laminated composite shells. Cylindrical Shell Dynamic Stability Spherical Shell Piezoelectric Layer Laminate Composite Plate Gupta, Abhishek aut Enthalten in Acta mechanica Springer Vienna, 1965 218(2010), 3-4 vom: 25. Dez., Seite 295-308 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:218 year:2010 number:3-4 day:25 month:12 pages:295-308 https://doi.org/10.1007/s00707-010-0424-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_4700 AR 218 2010 3-4 25 12 295-308 |
allfieldsGer |
10.1007/s00707-010-0424-4 doi (DE-627)OLC2030134899 (DE-He213)s00707-010-0424-4-p DE-627 ger DE-627 rakwb eng 530 VZ Pradyumna, S. verfasserin aut Nonlinear dynamic stability of laminated composite shells integrated with piezoelectric layers in thermal environment 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract This paper reports the nonlinear dynamic stability characteristics of laminated composite cylindrical (CYL) and spherical (SPH) shells integrated with piezoelectric layers using the finite element method. The shells are subjected to a thermal environment in addition to the in-plane periodic load and the electric load. The theoretical formulation considers Sanders’ approximation for doubly curved shells, and von Kármán type nonlinear strains are incorporated into the first-order shear deformation theory (FSDT). The formulation includes the effects of transverse shear, in-plane and rotatory inertia. The in-plane periodic load is taken as the parametric excitation in the governing equation. The nonlinear matrix amplitude equation is obtained by employing Galerkin’s method. The correctness of the formulation is established by comparing the authors’ results with those available in the published literature. Detailed parametric studies are carried out to investigate the effects of different parameters on the dynamic stability characteristics of laminated composite shells. Cylindrical Shell Dynamic Stability Spherical Shell Piezoelectric Layer Laminate Composite Plate Gupta, Abhishek aut Enthalten in Acta mechanica Springer Vienna, 1965 218(2010), 3-4 vom: 25. Dez., Seite 295-308 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:218 year:2010 number:3-4 day:25 month:12 pages:295-308 https://doi.org/10.1007/s00707-010-0424-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_4700 AR 218 2010 3-4 25 12 295-308 |
allfieldsSound |
10.1007/s00707-010-0424-4 doi (DE-627)OLC2030134899 (DE-He213)s00707-010-0424-4-p DE-627 ger DE-627 rakwb eng 530 VZ Pradyumna, S. verfasserin aut Nonlinear dynamic stability of laminated composite shells integrated with piezoelectric layers in thermal environment 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2010 Abstract This paper reports the nonlinear dynamic stability characteristics of laminated composite cylindrical (CYL) and spherical (SPH) shells integrated with piezoelectric layers using the finite element method. The shells are subjected to a thermal environment in addition to the in-plane periodic load and the electric load. The theoretical formulation considers Sanders’ approximation for doubly curved shells, and von Kármán type nonlinear strains are incorporated into the first-order shear deformation theory (FSDT). The formulation includes the effects of transverse shear, in-plane and rotatory inertia. The in-plane periodic load is taken as the parametric excitation in the governing equation. The nonlinear matrix amplitude equation is obtained by employing Galerkin’s method. The correctness of the formulation is established by comparing the authors’ results with those available in the published literature. Detailed parametric studies are carried out to investigate the effects of different parameters on the dynamic stability characteristics of laminated composite shells. Cylindrical Shell Dynamic Stability Spherical Shell Piezoelectric Layer Laminate Composite Plate Gupta, Abhishek aut Enthalten in Acta mechanica Springer Vienna, 1965 218(2010), 3-4 vom: 25. Dez., Seite 295-308 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:218 year:2010 number:3-4 day:25 month:12 pages:295-308 https://doi.org/10.1007/s00707-010-0424-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_4700 AR 218 2010 3-4 25 12 295-308 |
language |
English |
source |
Enthalten in Acta mechanica 218(2010), 3-4 vom: 25. Dez., Seite 295-308 volume:218 year:2010 number:3-4 day:25 month:12 pages:295-308 |
sourceStr |
Enthalten in Acta mechanica 218(2010), 3-4 vom: 25. Dez., Seite 295-308 volume:218 year:2010 number:3-4 day:25 month:12 pages:295-308 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cylindrical Shell Dynamic Stability Spherical Shell Piezoelectric Layer Laminate Composite Plate |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Acta mechanica |
authorswithroles_txt_mv |
Pradyumna, S. @@aut@@ Gupta, Abhishek @@aut@@ |
publishDateDaySort_date |
2010-12-25T00:00:00Z |
hierarchy_top_id |
129511676 |
dewey-sort |
3530 |
id |
OLC2030134899 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030134899</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502143208.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00707-010-0424-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030134899</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00707-010-0424-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pradyumna, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear dynamic stability of laminated composite shells integrated with piezoelectric layers in thermal environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper reports the nonlinear dynamic stability characteristics of laminated composite cylindrical (CYL) and spherical (SPH) shells integrated with piezoelectric layers using the finite element method. The shells are subjected to a thermal environment in addition to the in-plane periodic load and the electric load. The theoretical formulation considers Sanders’ approximation for doubly curved shells, and von Kármán type nonlinear strains are incorporated into the first-order shear deformation theory (FSDT). The formulation includes the effects of transverse shear, in-plane and rotatory inertia. The in-plane periodic load is taken as the parametric excitation in the governing equation. The nonlinear matrix amplitude equation is obtained by employing Galerkin’s method. The correctness of the formulation is established by comparing the authors’ results with those available in the published literature. Detailed parametric studies are carried out to investigate the effects of different parameters on the dynamic stability characteristics of laminated composite shells.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cylindrical Shell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic Stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherical Shell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piezoelectric Layer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laminate Composite Plate</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gupta, Abhishek</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer Vienna, 1965</subfield><subfield code="g">218(2010), 3-4 vom: 25. Dez., Seite 295-308</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:218</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:25</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:295-308</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00707-010-0424-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">218</subfield><subfield code="j">2010</subfield><subfield code="e">3-4</subfield><subfield code="b">25</subfield><subfield code="c">12</subfield><subfield code="h">295-308</subfield></datafield></record></collection>
|
author |
Pradyumna, S. |
spellingShingle |
Pradyumna, S. ddc 530 misc Cylindrical Shell misc Dynamic Stability misc Spherical Shell misc Piezoelectric Layer misc Laminate Composite Plate Nonlinear dynamic stability of laminated composite shells integrated with piezoelectric layers in thermal environment |
authorStr |
Pradyumna, S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129511676 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-5970 |
topic_title |
530 VZ Nonlinear dynamic stability of laminated composite shells integrated with piezoelectric layers in thermal environment Cylindrical Shell Dynamic Stability Spherical Shell Piezoelectric Layer Laminate Composite Plate |
topic |
ddc 530 misc Cylindrical Shell misc Dynamic Stability misc Spherical Shell misc Piezoelectric Layer misc Laminate Composite Plate |
topic_unstemmed |
ddc 530 misc Cylindrical Shell misc Dynamic Stability misc Spherical Shell misc Piezoelectric Layer misc Laminate Composite Plate |
topic_browse |
ddc 530 misc Cylindrical Shell misc Dynamic Stability misc Spherical Shell misc Piezoelectric Layer misc Laminate Composite Plate |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta mechanica |
hierarchy_parent_id |
129511676 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Acta mechanica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129511676 (DE-600)210328-X (DE-576)014919141 |
title |
Nonlinear dynamic stability of laminated composite shells integrated with piezoelectric layers in thermal environment |
ctrlnum |
(DE-627)OLC2030134899 (DE-He213)s00707-010-0424-4-p |
title_full |
Nonlinear dynamic stability of laminated composite shells integrated with piezoelectric layers in thermal environment |
author_sort |
Pradyumna, S. |
journal |
Acta mechanica |
journalStr |
Acta mechanica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
295 |
author_browse |
Pradyumna, S. Gupta, Abhishek |
container_volume |
218 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Pradyumna, S. |
doi_str_mv |
10.1007/s00707-010-0424-4 |
dewey-full |
530 |
title_sort |
nonlinear dynamic stability of laminated composite shells integrated with piezoelectric layers in thermal environment |
title_auth |
Nonlinear dynamic stability of laminated composite shells integrated with piezoelectric layers in thermal environment |
abstract |
Abstract This paper reports the nonlinear dynamic stability characteristics of laminated composite cylindrical (CYL) and spherical (SPH) shells integrated with piezoelectric layers using the finite element method. The shells are subjected to a thermal environment in addition to the in-plane periodic load and the electric load. The theoretical formulation considers Sanders’ approximation for doubly curved shells, and von Kármán type nonlinear strains are incorporated into the first-order shear deformation theory (FSDT). The formulation includes the effects of transverse shear, in-plane and rotatory inertia. The in-plane periodic load is taken as the parametric excitation in the governing equation. The nonlinear matrix amplitude equation is obtained by employing Galerkin’s method. The correctness of the formulation is established by comparing the authors’ results with those available in the published literature. Detailed parametric studies are carried out to investigate the effects of different parameters on the dynamic stability characteristics of laminated composite shells. © Springer-Verlag 2010 |
abstractGer |
Abstract This paper reports the nonlinear dynamic stability characteristics of laminated composite cylindrical (CYL) and spherical (SPH) shells integrated with piezoelectric layers using the finite element method. The shells are subjected to a thermal environment in addition to the in-plane periodic load and the electric load. The theoretical formulation considers Sanders’ approximation for doubly curved shells, and von Kármán type nonlinear strains are incorporated into the first-order shear deformation theory (FSDT). The formulation includes the effects of transverse shear, in-plane and rotatory inertia. The in-plane periodic load is taken as the parametric excitation in the governing equation. The nonlinear matrix amplitude equation is obtained by employing Galerkin’s method. The correctness of the formulation is established by comparing the authors’ results with those available in the published literature. Detailed parametric studies are carried out to investigate the effects of different parameters on the dynamic stability characteristics of laminated composite shells. © Springer-Verlag 2010 |
abstract_unstemmed |
Abstract This paper reports the nonlinear dynamic stability characteristics of laminated composite cylindrical (CYL) and spherical (SPH) shells integrated with piezoelectric layers using the finite element method. The shells are subjected to a thermal environment in addition to the in-plane periodic load and the electric load. The theoretical formulation considers Sanders’ approximation for doubly curved shells, and von Kármán type nonlinear strains are incorporated into the first-order shear deformation theory (FSDT). The formulation includes the effects of transverse shear, in-plane and rotatory inertia. The in-plane periodic load is taken as the parametric excitation in the governing equation. The nonlinear matrix amplitude equation is obtained by employing Galerkin’s method. The correctness of the formulation is established by comparing the authors’ results with those available in the published literature. Detailed parametric studies are carried out to investigate the effects of different parameters on the dynamic stability characteristics of laminated composite shells. © Springer-Verlag 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_4700 |
container_issue |
3-4 |
title_short |
Nonlinear dynamic stability of laminated composite shells integrated with piezoelectric layers in thermal environment |
url |
https://doi.org/10.1007/s00707-010-0424-4 |
remote_bool |
false |
author2 |
Gupta, Abhishek |
author2Str |
Gupta, Abhishek |
ppnlink |
129511676 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00707-010-0424-4 |
up_date |
2024-07-04T01:21:55.671Z |
_version_ |
1803609561546883072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030134899</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502143208.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00707-010-0424-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030134899</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00707-010-0424-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pradyumna, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear dynamic stability of laminated composite shells integrated with piezoelectric layers in thermal environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper reports the nonlinear dynamic stability characteristics of laminated composite cylindrical (CYL) and spherical (SPH) shells integrated with piezoelectric layers using the finite element method. The shells are subjected to a thermal environment in addition to the in-plane periodic load and the electric load. The theoretical formulation considers Sanders’ approximation for doubly curved shells, and von Kármán type nonlinear strains are incorporated into the first-order shear deformation theory (FSDT). The formulation includes the effects of transverse shear, in-plane and rotatory inertia. The in-plane periodic load is taken as the parametric excitation in the governing equation. The nonlinear matrix amplitude equation is obtained by employing Galerkin’s method. The correctness of the formulation is established by comparing the authors’ results with those available in the published literature. Detailed parametric studies are carried out to investigate the effects of different parameters on the dynamic stability characteristics of laminated composite shells.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cylindrical Shell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic Stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherical Shell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piezoelectric Layer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laminate Composite Plate</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gupta, Abhishek</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer Vienna, 1965</subfield><subfield code="g">218(2010), 3-4 vom: 25. Dez., Seite 295-308</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:218</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:25</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:295-308</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00707-010-0424-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">218</subfield><subfield code="j">2010</subfield><subfield code="e">3-4</subfield><subfield code="b">25</subfield><subfield code="c">12</subfield><subfield code="h">295-308</subfield></datafield></record></collection>
|
score |
7.401515 |