Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation
Abstract The paper presents an analysis of functionally graded material doubly curved panels with rectangular planform under the action of thermal and mechanical loads. Based on the first-order shear deformation theory of modified Sanders assumptions, five coupled partially differential equations (P...
Ausführliche Beschreibung
Autor*in: |
Kiani, Y. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta mechanica - Springer Vienna, 1965, 223(2012), 6 vom: 16. März, Seite 1199-1218 |
---|---|
Übergeordnetes Werk: |
volume:223 ; year:2012 ; number:6 ; day:16 ; month:03 ; pages:1199-1218 |
Links: |
---|
DOI / URN: |
10.1007/s00707-012-0629-9 |
---|
Katalog-ID: |
OLC2030136646 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2030136646 | ||
003 | DE-627 | ||
005 | 20230502143225.0 | ||
007 | tu | ||
008 | 200820s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00707-012-0629-9 |2 doi | |
035 | |a (DE-627)OLC2030136646 | ||
035 | |a (DE-He213)s00707-012-0629-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Kiani, Y. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2012 | ||
520 | |a Abstract The paper presents an analysis of functionally graded material doubly curved panels with rectangular planform under the action of thermal and mechanical loads. Based on the first-order shear deformation theory of modified Sanders assumptions, five coupled partially differential equations (PDEs) are established as equations of motion. Each thermo-mechanical property of the shell follows the power law distribution across the thickness, except Poisson’s ratio, which is kept constant through the panel. Assuming that four edges of the shell-panel are simply supported, a Navier-based solution is adopted to reduce the PDEs into time-dependent ODEs. Applying the Laplace transformation, the equations of motion are transformed into the Laplace domain. With the aid of analytical Laplace inverse method, solutions of stresses, strains, and displacements are obtained in time domain and expressed in explicit phrases. Dynamic, free vibration, and thermo-mechanical bending analysis of the panel is carried out for various geometries. Obtained results are validated with the well-known available data reported in the literature. | ||
650 | 4 | |a Free Vibration | |
650 | 4 | |a Free Vibration Analysis | |
650 | 4 | |a Shear Deformation Theory | |
650 | 4 | |a Cylindrical Panel | |
650 | 4 | |a Laplace Domain | |
700 | 1 | |a Shakeri, M. |4 aut | |
700 | 1 | |a Eslami, M. R. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Acta mechanica |d Springer Vienna, 1965 |g 223(2012), 6 vom: 16. März, Seite 1199-1218 |w (DE-627)129511676 |w (DE-600)210328-X |w (DE-576)014919141 |x 0001-5970 |7 nnns |
773 | 1 | 8 | |g volume:223 |g year:2012 |g number:6 |g day:16 |g month:03 |g pages:1199-1218 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00707-012-0629-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 223 |j 2012 |e 6 |b 16 |c 03 |h 1199-1218 |
author_variant |
y k yk m s ms m r e mr mre |
---|---|
matchkey_str |
article:00015970:2012----::hrolsifevbainndnmceaiuoafmobyuvdaevahaayiah |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1007/s00707-012-0629-9 doi (DE-627)OLC2030136646 (DE-He213)s00707-012-0629-9-p DE-627 ger DE-627 rakwb eng 530 VZ Kiani, Y. verfasserin aut Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2012 Abstract The paper presents an analysis of functionally graded material doubly curved panels with rectangular planform under the action of thermal and mechanical loads. Based on the first-order shear deformation theory of modified Sanders assumptions, five coupled partially differential equations (PDEs) are established as equations of motion. Each thermo-mechanical property of the shell follows the power law distribution across the thickness, except Poisson’s ratio, which is kept constant through the panel. Assuming that four edges of the shell-panel are simply supported, a Navier-based solution is adopted to reduce the PDEs into time-dependent ODEs. Applying the Laplace transformation, the equations of motion are transformed into the Laplace domain. With the aid of analytical Laplace inverse method, solutions of stresses, strains, and displacements are obtained in time domain and expressed in explicit phrases. Dynamic, free vibration, and thermo-mechanical bending analysis of the panel is carried out for various geometries. Obtained results are validated with the well-known available data reported in the literature. Free Vibration Free Vibration Analysis Shear Deformation Theory Cylindrical Panel Laplace Domain Shakeri, M. aut Eslami, M. R. aut Enthalten in Acta mechanica Springer Vienna, 1965 223(2012), 6 vom: 16. März, Seite 1199-1218 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:223 year:2012 number:6 day:16 month:03 pages:1199-1218 https://doi.org/10.1007/s00707-012-0629-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_4700 AR 223 2012 6 16 03 1199-1218 |
spelling |
10.1007/s00707-012-0629-9 doi (DE-627)OLC2030136646 (DE-He213)s00707-012-0629-9-p DE-627 ger DE-627 rakwb eng 530 VZ Kiani, Y. verfasserin aut Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2012 Abstract The paper presents an analysis of functionally graded material doubly curved panels with rectangular planform under the action of thermal and mechanical loads. Based on the first-order shear deformation theory of modified Sanders assumptions, five coupled partially differential equations (PDEs) are established as equations of motion. Each thermo-mechanical property of the shell follows the power law distribution across the thickness, except Poisson’s ratio, which is kept constant through the panel. Assuming that four edges of the shell-panel are simply supported, a Navier-based solution is adopted to reduce the PDEs into time-dependent ODEs. Applying the Laplace transformation, the equations of motion are transformed into the Laplace domain. With the aid of analytical Laplace inverse method, solutions of stresses, strains, and displacements are obtained in time domain and expressed in explicit phrases. Dynamic, free vibration, and thermo-mechanical bending analysis of the panel is carried out for various geometries. Obtained results are validated with the well-known available data reported in the literature. Free Vibration Free Vibration Analysis Shear Deformation Theory Cylindrical Panel Laplace Domain Shakeri, M. aut Eslami, M. R. aut Enthalten in Acta mechanica Springer Vienna, 1965 223(2012), 6 vom: 16. März, Seite 1199-1218 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:223 year:2012 number:6 day:16 month:03 pages:1199-1218 https://doi.org/10.1007/s00707-012-0629-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_4700 AR 223 2012 6 16 03 1199-1218 |
allfields_unstemmed |
10.1007/s00707-012-0629-9 doi (DE-627)OLC2030136646 (DE-He213)s00707-012-0629-9-p DE-627 ger DE-627 rakwb eng 530 VZ Kiani, Y. verfasserin aut Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2012 Abstract The paper presents an analysis of functionally graded material doubly curved panels with rectangular planform under the action of thermal and mechanical loads. Based on the first-order shear deformation theory of modified Sanders assumptions, five coupled partially differential equations (PDEs) are established as equations of motion. Each thermo-mechanical property of the shell follows the power law distribution across the thickness, except Poisson’s ratio, which is kept constant through the panel. Assuming that four edges of the shell-panel are simply supported, a Navier-based solution is adopted to reduce the PDEs into time-dependent ODEs. Applying the Laplace transformation, the equations of motion are transformed into the Laplace domain. With the aid of analytical Laplace inverse method, solutions of stresses, strains, and displacements are obtained in time domain and expressed in explicit phrases. Dynamic, free vibration, and thermo-mechanical bending analysis of the panel is carried out for various geometries. Obtained results are validated with the well-known available data reported in the literature. Free Vibration Free Vibration Analysis Shear Deformation Theory Cylindrical Panel Laplace Domain Shakeri, M. aut Eslami, M. R. aut Enthalten in Acta mechanica Springer Vienna, 1965 223(2012), 6 vom: 16. März, Seite 1199-1218 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:223 year:2012 number:6 day:16 month:03 pages:1199-1218 https://doi.org/10.1007/s00707-012-0629-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_4700 AR 223 2012 6 16 03 1199-1218 |
allfieldsGer |
10.1007/s00707-012-0629-9 doi (DE-627)OLC2030136646 (DE-He213)s00707-012-0629-9-p DE-627 ger DE-627 rakwb eng 530 VZ Kiani, Y. verfasserin aut Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2012 Abstract The paper presents an analysis of functionally graded material doubly curved panels with rectangular planform under the action of thermal and mechanical loads. Based on the first-order shear deformation theory of modified Sanders assumptions, five coupled partially differential equations (PDEs) are established as equations of motion. Each thermo-mechanical property of the shell follows the power law distribution across the thickness, except Poisson’s ratio, which is kept constant through the panel. Assuming that four edges of the shell-panel are simply supported, a Navier-based solution is adopted to reduce the PDEs into time-dependent ODEs. Applying the Laplace transformation, the equations of motion are transformed into the Laplace domain. With the aid of analytical Laplace inverse method, solutions of stresses, strains, and displacements are obtained in time domain and expressed in explicit phrases. Dynamic, free vibration, and thermo-mechanical bending analysis of the panel is carried out for various geometries. Obtained results are validated with the well-known available data reported in the literature. Free Vibration Free Vibration Analysis Shear Deformation Theory Cylindrical Panel Laplace Domain Shakeri, M. aut Eslami, M. R. aut Enthalten in Acta mechanica Springer Vienna, 1965 223(2012), 6 vom: 16. März, Seite 1199-1218 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:223 year:2012 number:6 day:16 month:03 pages:1199-1218 https://doi.org/10.1007/s00707-012-0629-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_4700 AR 223 2012 6 16 03 1199-1218 |
allfieldsSound |
10.1007/s00707-012-0629-9 doi (DE-627)OLC2030136646 (DE-He213)s00707-012-0629-9-p DE-627 ger DE-627 rakwb eng 530 VZ Kiani, Y. verfasserin aut Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2012 Abstract The paper presents an analysis of functionally graded material doubly curved panels with rectangular planform under the action of thermal and mechanical loads. Based on the first-order shear deformation theory of modified Sanders assumptions, five coupled partially differential equations (PDEs) are established as equations of motion. Each thermo-mechanical property of the shell follows the power law distribution across the thickness, except Poisson’s ratio, which is kept constant through the panel. Assuming that four edges of the shell-panel are simply supported, a Navier-based solution is adopted to reduce the PDEs into time-dependent ODEs. Applying the Laplace transformation, the equations of motion are transformed into the Laplace domain. With the aid of analytical Laplace inverse method, solutions of stresses, strains, and displacements are obtained in time domain and expressed in explicit phrases. Dynamic, free vibration, and thermo-mechanical bending analysis of the panel is carried out for various geometries. Obtained results are validated with the well-known available data reported in the literature. Free Vibration Free Vibration Analysis Shear Deformation Theory Cylindrical Panel Laplace Domain Shakeri, M. aut Eslami, M. R. aut Enthalten in Acta mechanica Springer Vienna, 1965 223(2012), 6 vom: 16. März, Seite 1199-1218 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:223 year:2012 number:6 day:16 month:03 pages:1199-1218 https://doi.org/10.1007/s00707-012-0629-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_4700 AR 223 2012 6 16 03 1199-1218 |
language |
English |
source |
Enthalten in Acta mechanica 223(2012), 6 vom: 16. März, Seite 1199-1218 volume:223 year:2012 number:6 day:16 month:03 pages:1199-1218 |
sourceStr |
Enthalten in Acta mechanica 223(2012), 6 vom: 16. März, Seite 1199-1218 volume:223 year:2012 number:6 day:16 month:03 pages:1199-1218 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Free Vibration Free Vibration Analysis Shear Deformation Theory Cylindrical Panel Laplace Domain |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Acta mechanica |
authorswithroles_txt_mv |
Kiani, Y. @@aut@@ Shakeri, M. @@aut@@ Eslami, M. R. @@aut@@ |
publishDateDaySort_date |
2012-03-16T00:00:00Z |
hierarchy_top_id |
129511676 |
dewey-sort |
3530 |
id |
OLC2030136646 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030136646</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502143225.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00707-012-0629-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030136646</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00707-012-0629-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kiani, Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The paper presents an analysis of functionally graded material doubly curved panels with rectangular planform under the action of thermal and mechanical loads. Based on the first-order shear deformation theory of modified Sanders assumptions, five coupled partially differential equations (PDEs) are established as equations of motion. Each thermo-mechanical property of the shell follows the power law distribution across the thickness, except Poisson’s ratio, which is kept constant through the panel. Assuming that four edges of the shell-panel are simply supported, a Navier-based solution is adopted to reduce the PDEs into time-dependent ODEs. Applying the Laplace transformation, the equations of motion are transformed into the Laplace domain. With the aid of analytical Laplace inverse method, solutions of stresses, strains, and displacements are obtained in time domain and expressed in explicit phrases. Dynamic, free vibration, and thermo-mechanical bending analysis of the panel is carried out for various geometries. Obtained results are validated with the well-known available data reported in the literature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Vibration Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shear Deformation Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cylindrical Panel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laplace Domain</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shakeri, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eslami, M. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer Vienna, 1965</subfield><subfield code="g">223(2012), 6 vom: 16. März, Seite 1199-1218</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:223</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:6</subfield><subfield code="g">day:16</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1199-1218</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00707-012-0629-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">223</subfield><subfield code="j">2012</subfield><subfield code="e">6</subfield><subfield code="b">16</subfield><subfield code="c">03</subfield><subfield code="h">1199-1218</subfield></datafield></record></collection>
|
author |
Kiani, Y. |
spellingShingle |
Kiani, Y. ddc 530 misc Free Vibration misc Free Vibration Analysis misc Shear Deformation Theory misc Cylindrical Panel misc Laplace Domain Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation |
authorStr |
Kiani, Y. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129511676 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-5970 |
topic_title |
530 VZ Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation Free Vibration Free Vibration Analysis Shear Deformation Theory Cylindrical Panel Laplace Domain |
topic |
ddc 530 misc Free Vibration misc Free Vibration Analysis misc Shear Deformation Theory misc Cylindrical Panel misc Laplace Domain |
topic_unstemmed |
ddc 530 misc Free Vibration misc Free Vibration Analysis misc Shear Deformation Theory misc Cylindrical Panel misc Laplace Domain |
topic_browse |
ddc 530 misc Free Vibration misc Free Vibration Analysis misc Shear Deformation Theory misc Cylindrical Panel misc Laplace Domain |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta mechanica |
hierarchy_parent_id |
129511676 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Acta mechanica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129511676 (DE-600)210328-X (DE-576)014919141 |
title |
Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation |
ctrlnum |
(DE-627)OLC2030136646 (DE-He213)s00707-012-0629-9-p |
title_full |
Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation |
author_sort |
Kiani, Y. |
journal |
Acta mechanica |
journalStr |
Acta mechanica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
1199 |
author_browse |
Kiani, Y. Shakeri, M. Eslami, M. R. |
container_volume |
223 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Kiani, Y. |
doi_str_mv |
10.1007/s00707-012-0629-9 |
dewey-full |
530 |
title_sort |
thermoelastic free vibration and dynamic behaviour of an fgm doubly curved panel via the analytical hybrid laplace–fourier transformation |
title_auth |
Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation |
abstract |
Abstract The paper presents an analysis of functionally graded material doubly curved panels with rectangular planform under the action of thermal and mechanical loads. Based on the first-order shear deformation theory of modified Sanders assumptions, five coupled partially differential equations (PDEs) are established as equations of motion. Each thermo-mechanical property of the shell follows the power law distribution across the thickness, except Poisson’s ratio, which is kept constant through the panel. Assuming that four edges of the shell-panel are simply supported, a Navier-based solution is adopted to reduce the PDEs into time-dependent ODEs. Applying the Laplace transformation, the equations of motion are transformed into the Laplace domain. With the aid of analytical Laplace inverse method, solutions of stresses, strains, and displacements are obtained in time domain and expressed in explicit phrases. Dynamic, free vibration, and thermo-mechanical bending analysis of the panel is carried out for various geometries. Obtained results are validated with the well-known available data reported in the literature. © Springer-Verlag 2012 |
abstractGer |
Abstract The paper presents an analysis of functionally graded material doubly curved panels with rectangular planform under the action of thermal and mechanical loads. Based on the first-order shear deformation theory of modified Sanders assumptions, five coupled partially differential equations (PDEs) are established as equations of motion. Each thermo-mechanical property of the shell follows the power law distribution across the thickness, except Poisson’s ratio, which is kept constant through the panel. Assuming that four edges of the shell-panel are simply supported, a Navier-based solution is adopted to reduce the PDEs into time-dependent ODEs. Applying the Laplace transformation, the equations of motion are transformed into the Laplace domain. With the aid of analytical Laplace inverse method, solutions of stresses, strains, and displacements are obtained in time domain and expressed in explicit phrases. Dynamic, free vibration, and thermo-mechanical bending analysis of the panel is carried out for various geometries. Obtained results are validated with the well-known available data reported in the literature. © Springer-Verlag 2012 |
abstract_unstemmed |
Abstract The paper presents an analysis of functionally graded material doubly curved panels with rectangular planform under the action of thermal and mechanical loads. Based on the first-order shear deformation theory of modified Sanders assumptions, five coupled partially differential equations (PDEs) are established as equations of motion. Each thermo-mechanical property of the shell follows the power law distribution across the thickness, except Poisson’s ratio, which is kept constant through the panel. Assuming that four edges of the shell-panel are simply supported, a Navier-based solution is adopted to reduce the PDEs into time-dependent ODEs. Applying the Laplace transformation, the equations of motion are transformed into the Laplace domain. With the aid of analytical Laplace inverse method, solutions of stresses, strains, and displacements are obtained in time domain and expressed in explicit phrases. Dynamic, free vibration, and thermo-mechanical bending analysis of the panel is carried out for various geometries. Obtained results are validated with the well-known available data reported in the literature. © Springer-Verlag 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2006 GBV_ILN_2020 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation |
url |
https://doi.org/10.1007/s00707-012-0629-9 |
remote_bool |
false |
author2 |
Shakeri, M. Eslami, M. R. |
author2Str |
Shakeri, M. Eslami, M. R. |
ppnlink |
129511676 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00707-012-0629-9 |
up_date |
2024-07-04T01:22:13.761Z |
_version_ |
1803609580514574336 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030136646</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502143225.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00707-012-0629-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030136646</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00707-012-0629-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kiani, Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The paper presents an analysis of functionally graded material doubly curved panels with rectangular planform under the action of thermal and mechanical loads. Based on the first-order shear deformation theory of modified Sanders assumptions, five coupled partially differential equations (PDEs) are established as equations of motion. Each thermo-mechanical property of the shell follows the power law distribution across the thickness, except Poisson’s ratio, which is kept constant through the panel. Assuming that four edges of the shell-panel are simply supported, a Navier-based solution is adopted to reduce the PDEs into time-dependent ODEs. Applying the Laplace transformation, the equations of motion are transformed into the Laplace domain. With the aid of analytical Laplace inverse method, solutions of stresses, strains, and displacements are obtained in time domain and expressed in explicit phrases. Dynamic, free vibration, and thermo-mechanical bending analysis of the panel is carried out for various geometries. Obtained results are validated with the well-known available data reported in the literature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free Vibration Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shear Deformation Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cylindrical Panel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laplace Domain</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shakeri, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eslami, M. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer Vienna, 1965</subfield><subfield code="g">223(2012), 6 vom: 16. März, Seite 1199-1218</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:223</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:6</subfield><subfield code="g">day:16</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1199-1218</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00707-012-0629-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">223</subfield><subfield code="j">2012</subfield><subfield code="e">6</subfield><subfield code="b">16</subfield><subfield code="c">03</subfield><subfield code="h">1199-1218</subfield></datafield></record></collection>
|
score |
7.3994074 |