Estimating the poroelastic properties of cracked materials
Abstract We present a comparative study of the ability of some micromechanics estimates to predict the overall properties of heterogeneous materials. We focus mainly on cracked materials, for which this task is difficult and many estimates fail. We study particularly the interaction direct derivativ...
Ausführliche Beschreibung
Autor*in: |
Charpin, Laurent [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Wien 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta mechanica - Springer Vienna, 1965, 225(2014), 9 vom: 05. Feb., Seite 2501-2519 |
---|---|
Übergeordnetes Werk: |
volume:225 ; year:2014 ; number:9 ; day:05 ; month:02 ; pages:2501-2519 |
Links: |
---|
DOI / URN: |
10.1007/s00707-013-1082-0 |
---|
Katalog-ID: |
OLC2030141402 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2030141402 | ||
003 | DE-627 | ||
005 | 20230502143302.0 | ||
007 | tu | ||
008 | 200820s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00707-013-1082-0 |2 doi | |
035 | |a (DE-627)OLC2030141402 | ||
035 | |a (DE-He213)s00707-013-1082-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Charpin, Laurent |e verfasserin |4 aut | |
245 | 1 | 0 | |a Estimating the poroelastic properties of cracked materials |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Wien 2014 | ||
520 | |a Abstract We present a comparative study of the ability of some micromechanics estimates to predict the overall properties of heterogeneous materials. We focus mainly on cracked materials, for which this task is difficult and many estimates fail. We study particularly the interaction direct derivative estimate, proposed by Zheng and Du, which is an approximation of the generalized self-consistent scheme, but has the very convenient property to be always explicit. A modified version of this estimate, called full-range IDD by Zheng and Du, yields good results when comparing all poromechanical coefficients predicted by the estimate to finite element simulations of a 2D cracked material in plane strain, up to crack density factors of 1 for aligned cracks and 0.60 for randomly oriented cracks. The accuracy of finite element computations of the overall moduli is also commented by plotting the convergence of the average of the properties as well as the confidence intervals on these averages. | ||
650 | 4 | |a Representative Volume Element | |
650 | 4 | |a Crack Density | |
650 | 4 | |a Stiffness Tensor | |
650 | 4 | |a Random Sequential Addition | |
650 | 4 | |a Localization Tensor | |
700 | 1 | |a Ehrlacher, Alain |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Acta mechanica |d Springer Vienna, 1965 |g 225(2014), 9 vom: 05. Feb., Seite 2501-2519 |w (DE-627)129511676 |w (DE-600)210328-X |w (DE-576)014919141 |x 0001-5970 |7 nnns |
773 | 1 | 8 | |g volume:225 |g year:2014 |g number:9 |g day:05 |g month:02 |g pages:2501-2519 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00707-013-1082-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 225 |j 2014 |e 9 |b 05 |c 02 |h 2501-2519 |
author_variant |
l c lc a e ae |
---|---|
matchkey_str |
article:00015970:2014----::siaighpreatcrprisfr |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s00707-013-1082-0 doi (DE-627)OLC2030141402 (DE-He213)s00707-013-1082-0-p DE-627 ger DE-627 rakwb eng 530 VZ Charpin, Laurent verfasserin aut Estimating the poroelastic properties of cracked materials 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2014 Abstract We present a comparative study of the ability of some micromechanics estimates to predict the overall properties of heterogeneous materials. We focus mainly on cracked materials, for which this task is difficult and many estimates fail. We study particularly the interaction direct derivative estimate, proposed by Zheng and Du, which is an approximation of the generalized self-consistent scheme, but has the very convenient property to be always explicit. A modified version of this estimate, called full-range IDD by Zheng and Du, yields good results when comparing all poromechanical coefficients predicted by the estimate to finite element simulations of a 2D cracked material in plane strain, up to crack density factors of 1 for aligned cracks and 0.60 for randomly oriented cracks. The accuracy of finite element computations of the overall moduli is also commented by plotting the convergence of the average of the properties as well as the confidence intervals on these averages. Representative Volume Element Crack Density Stiffness Tensor Random Sequential Addition Localization Tensor Ehrlacher, Alain aut Enthalten in Acta mechanica Springer Vienna, 1965 225(2014), 9 vom: 05. Feb., Seite 2501-2519 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:225 year:2014 number:9 day:05 month:02 pages:2501-2519 https://doi.org/10.1007/s00707-013-1082-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_4700 AR 225 2014 9 05 02 2501-2519 |
spelling |
10.1007/s00707-013-1082-0 doi (DE-627)OLC2030141402 (DE-He213)s00707-013-1082-0-p DE-627 ger DE-627 rakwb eng 530 VZ Charpin, Laurent verfasserin aut Estimating the poroelastic properties of cracked materials 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2014 Abstract We present a comparative study of the ability of some micromechanics estimates to predict the overall properties of heterogeneous materials. We focus mainly on cracked materials, for which this task is difficult and many estimates fail. We study particularly the interaction direct derivative estimate, proposed by Zheng and Du, which is an approximation of the generalized self-consistent scheme, but has the very convenient property to be always explicit. A modified version of this estimate, called full-range IDD by Zheng and Du, yields good results when comparing all poromechanical coefficients predicted by the estimate to finite element simulations of a 2D cracked material in plane strain, up to crack density factors of 1 for aligned cracks and 0.60 for randomly oriented cracks. The accuracy of finite element computations of the overall moduli is also commented by plotting the convergence of the average of the properties as well as the confidence intervals on these averages. Representative Volume Element Crack Density Stiffness Tensor Random Sequential Addition Localization Tensor Ehrlacher, Alain aut Enthalten in Acta mechanica Springer Vienna, 1965 225(2014), 9 vom: 05. Feb., Seite 2501-2519 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:225 year:2014 number:9 day:05 month:02 pages:2501-2519 https://doi.org/10.1007/s00707-013-1082-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_4700 AR 225 2014 9 05 02 2501-2519 |
allfields_unstemmed |
10.1007/s00707-013-1082-0 doi (DE-627)OLC2030141402 (DE-He213)s00707-013-1082-0-p DE-627 ger DE-627 rakwb eng 530 VZ Charpin, Laurent verfasserin aut Estimating the poroelastic properties of cracked materials 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2014 Abstract We present a comparative study of the ability of some micromechanics estimates to predict the overall properties of heterogeneous materials. We focus mainly on cracked materials, for which this task is difficult and many estimates fail. We study particularly the interaction direct derivative estimate, proposed by Zheng and Du, which is an approximation of the generalized self-consistent scheme, but has the very convenient property to be always explicit. A modified version of this estimate, called full-range IDD by Zheng and Du, yields good results when comparing all poromechanical coefficients predicted by the estimate to finite element simulations of a 2D cracked material in plane strain, up to crack density factors of 1 for aligned cracks and 0.60 for randomly oriented cracks. The accuracy of finite element computations of the overall moduli is also commented by plotting the convergence of the average of the properties as well as the confidence intervals on these averages. Representative Volume Element Crack Density Stiffness Tensor Random Sequential Addition Localization Tensor Ehrlacher, Alain aut Enthalten in Acta mechanica Springer Vienna, 1965 225(2014), 9 vom: 05. Feb., Seite 2501-2519 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:225 year:2014 number:9 day:05 month:02 pages:2501-2519 https://doi.org/10.1007/s00707-013-1082-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_4700 AR 225 2014 9 05 02 2501-2519 |
allfieldsGer |
10.1007/s00707-013-1082-0 doi (DE-627)OLC2030141402 (DE-He213)s00707-013-1082-0-p DE-627 ger DE-627 rakwb eng 530 VZ Charpin, Laurent verfasserin aut Estimating the poroelastic properties of cracked materials 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2014 Abstract We present a comparative study of the ability of some micromechanics estimates to predict the overall properties of heterogeneous materials. We focus mainly on cracked materials, for which this task is difficult and many estimates fail. We study particularly the interaction direct derivative estimate, proposed by Zheng and Du, which is an approximation of the generalized self-consistent scheme, but has the very convenient property to be always explicit. A modified version of this estimate, called full-range IDD by Zheng and Du, yields good results when comparing all poromechanical coefficients predicted by the estimate to finite element simulations of a 2D cracked material in plane strain, up to crack density factors of 1 for aligned cracks and 0.60 for randomly oriented cracks. The accuracy of finite element computations of the overall moduli is also commented by plotting the convergence of the average of the properties as well as the confidence intervals on these averages. Representative Volume Element Crack Density Stiffness Tensor Random Sequential Addition Localization Tensor Ehrlacher, Alain aut Enthalten in Acta mechanica Springer Vienna, 1965 225(2014), 9 vom: 05. Feb., Seite 2501-2519 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:225 year:2014 number:9 day:05 month:02 pages:2501-2519 https://doi.org/10.1007/s00707-013-1082-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_4700 AR 225 2014 9 05 02 2501-2519 |
allfieldsSound |
10.1007/s00707-013-1082-0 doi (DE-627)OLC2030141402 (DE-He213)s00707-013-1082-0-p DE-627 ger DE-627 rakwb eng 530 VZ Charpin, Laurent verfasserin aut Estimating the poroelastic properties of cracked materials 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2014 Abstract We present a comparative study of the ability of some micromechanics estimates to predict the overall properties of heterogeneous materials. We focus mainly on cracked materials, for which this task is difficult and many estimates fail. We study particularly the interaction direct derivative estimate, proposed by Zheng and Du, which is an approximation of the generalized self-consistent scheme, but has the very convenient property to be always explicit. A modified version of this estimate, called full-range IDD by Zheng and Du, yields good results when comparing all poromechanical coefficients predicted by the estimate to finite element simulations of a 2D cracked material in plane strain, up to crack density factors of 1 for aligned cracks and 0.60 for randomly oriented cracks. The accuracy of finite element computations of the overall moduli is also commented by plotting the convergence of the average of the properties as well as the confidence intervals on these averages. Representative Volume Element Crack Density Stiffness Tensor Random Sequential Addition Localization Tensor Ehrlacher, Alain aut Enthalten in Acta mechanica Springer Vienna, 1965 225(2014), 9 vom: 05. Feb., Seite 2501-2519 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:225 year:2014 number:9 day:05 month:02 pages:2501-2519 https://doi.org/10.1007/s00707-013-1082-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_4700 AR 225 2014 9 05 02 2501-2519 |
language |
English |
source |
Enthalten in Acta mechanica 225(2014), 9 vom: 05. Feb., Seite 2501-2519 volume:225 year:2014 number:9 day:05 month:02 pages:2501-2519 |
sourceStr |
Enthalten in Acta mechanica 225(2014), 9 vom: 05. Feb., Seite 2501-2519 volume:225 year:2014 number:9 day:05 month:02 pages:2501-2519 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Representative Volume Element Crack Density Stiffness Tensor Random Sequential Addition Localization Tensor |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Acta mechanica |
authorswithroles_txt_mv |
Charpin, Laurent @@aut@@ Ehrlacher, Alain @@aut@@ |
publishDateDaySort_date |
2014-02-05T00:00:00Z |
hierarchy_top_id |
129511676 |
dewey-sort |
3530 |
id |
OLC2030141402 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030141402</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502143302.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00707-013-1082-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030141402</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00707-013-1082-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Charpin, Laurent</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimating the poroelastic properties of cracked materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Wien 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present a comparative study of the ability of some micromechanics estimates to predict the overall properties of heterogeneous materials. We focus mainly on cracked materials, for which this task is difficult and many estimates fail. We study particularly the interaction direct derivative estimate, proposed by Zheng and Du, which is an approximation of the generalized self-consistent scheme, but has the very convenient property to be always explicit. A modified version of this estimate, called full-range IDD by Zheng and Du, yields good results when comparing all poromechanical coefficients predicted by the estimate to finite element simulations of a 2D cracked material in plane strain, up to crack density factors of 1 for aligned cracks and 0.60 for randomly oriented cracks. The accuracy of finite element computations of the overall moduli is also commented by plotting the convergence of the average of the properties as well as the confidence intervals on these averages.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representative Volume Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crack Density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stiffness Tensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random Sequential Addition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Localization Tensor</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ehrlacher, Alain</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer Vienna, 1965</subfield><subfield code="g">225(2014), 9 vom: 05. Feb., Seite 2501-2519</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:225</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:9</subfield><subfield code="g">day:05</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:2501-2519</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00707-013-1082-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">225</subfield><subfield code="j">2014</subfield><subfield code="e">9</subfield><subfield code="b">05</subfield><subfield code="c">02</subfield><subfield code="h">2501-2519</subfield></datafield></record></collection>
|
author |
Charpin, Laurent |
spellingShingle |
Charpin, Laurent ddc 530 misc Representative Volume Element misc Crack Density misc Stiffness Tensor misc Random Sequential Addition misc Localization Tensor Estimating the poroelastic properties of cracked materials |
authorStr |
Charpin, Laurent |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129511676 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-5970 |
topic_title |
530 VZ Estimating the poroelastic properties of cracked materials Representative Volume Element Crack Density Stiffness Tensor Random Sequential Addition Localization Tensor |
topic |
ddc 530 misc Representative Volume Element misc Crack Density misc Stiffness Tensor misc Random Sequential Addition misc Localization Tensor |
topic_unstemmed |
ddc 530 misc Representative Volume Element misc Crack Density misc Stiffness Tensor misc Random Sequential Addition misc Localization Tensor |
topic_browse |
ddc 530 misc Representative Volume Element misc Crack Density misc Stiffness Tensor misc Random Sequential Addition misc Localization Tensor |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta mechanica |
hierarchy_parent_id |
129511676 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Acta mechanica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129511676 (DE-600)210328-X (DE-576)014919141 |
title |
Estimating the poroelastic properties of cracked materials |
ctrlnum |
(DE-627)OLC2030141402 (DE-He213)s00707-013-1082-0-p |
title_full |
Estimating the poroelastic properties of cracked materials |
author_sort |
Charpin, Laurent |
journal |
Acta mechanica |
journalStr |
Acta mechanica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
2501 |
author_browse |
Charpin, Laurent Ehrlacher, Alain |
container_volume |
225 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Charpin, Laurent |
doi_str_mv |
10.1007/s00707-013-1082-0 |
dewey-full |
530 |
title_sort |
estimating the poroelastic properties of cracked materials |
title_auth |
Estimating the poroelastic properties of cracked materials |
abstract |
Abstract We present a comparative study of the ability of some micromechanics estimates to predict the overall properties of heterogeneous materials. We focus mainly on cracked materials, for which this task is difficult and many estimates fail. We study particularly the interaction direct derivative estimate, proposed by Zheng and Du, which is an approximation of the generalized self-consistent scheme, but has the very convenient property to be always explicit. A modified version of this estimate, called full-range IDD by Zheng and Du, yields good results when comparing all poromechanical coefficients predicted by the estimate to finite element simulations of a 2D cracked material in plane strain, up to crack density factors of 1 for aligned cracks and 0.60 for randomly oriented cracks. The accuracy of finite element computations of the overall moduli is also commented by plotting the convergence of the average of the properties as well as the confidence intervals on these averages. © Springer-Verlag Wien 2014 |
abstractGer |
Abstract We present a comparative study of the ability of some micromechanics estimates to predict the overall properties of heterogeneous materials. We focus mainly on cracked materials, for which this task is difficult and many estimates fail. We study particularly the interaction direct derivative estimate, proposed by Zheng and Du, which is an approximation of the generalized self-consistent scheme, but has the very convenient property to be always explicit. A modified version of this estimate, called full-range IDD by Zheng and Du, yields good results when comparing all poromechanical coefficients predicted by the estimate to finite element simulations of a 2D cracked material in plane strain, up to crack density factors of 1 for aligned cracks and 0.60 for randomly oriented cracks. The accuracy of finite element computations of the overall moduli is also commented by plotting the convergence of the average of the properties as well as the confidence intervals on these averages. © Springer-Verlag Wien 2014 |
abstract_unstemmed |
Abstract We present a comparative study of the ability of some micromechanics estimates to predict the overall properties of heterogeneous materials. We focus mainly on cracked materials, for which this task is difficult and many estimates fail. We study particularly the interaction direct derivative estimate, proposed by Zheng and Du, which is an approximation of the generalized self-consistent scheme, but has the very convenient property to be always explicit. A modified version of this estimate, called full-range IDD by Zheng and Du, yields good results when comparing all poromechanical coefficients predicted by the estimate to finite element simulations of a 2D cracked material in plane strain, up to crack density factors of 1 for aligned cracks and 0.60 for randomly oriented cracks. The accuracy of finite element computations of the overall moduli is also commented by plotting the convergence of the average of the properties as well as the confidence intervals on these averages. © Springer-Verlag Wien 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2020 GBV_ILN_4700 |
container_issue |
9 |
title_short |
Estimating the poroelastic properties of cracked materials |
url |
https://doi.org/10.1007/s00707-013-1082-0 |
remote_bool |
false |
author2 |
Ehrlacher, Alain |
author2Str |
Ehrlacher, Alain |
ppnlink |
129511676 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00707-013-1082-0 |
up_date |
2024-07-04T01:23:05.370Z |
_version_ |
1803609634631581696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030141402</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502143302.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00707-013-1082-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030141402</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00707-013-1082-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Charpin, Laurent</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimating the poroelastic properties of cracked materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Wien 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present a comparative study of the ability of some micromechanics estimates to predict the overall properties of heterogeneous materials. We focus mainly on cracked materials, for which this task is difficult and many estimates fail. We study particularly the interaction direct derivative estimate, proposed by Zheng and Du, which is an approximation of the generalized self-consistent scheme, but has the very convenient property to be always explicit. A modified version of this estimate, called full-range IDD by Zheng and Du, yields good results when comparing all poromechanical coefficients predicted by the estimate to finite element simulations of a 2D cracked material in plane strain, up to crack density factors of 1 for aligned cracks and 0.60 for randomly oriented cracks. The accuracy of finite element computations of the overall moduli is also commented by plotting the convergence of the average of the properties as well as the confidence intervals on these averages.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representative Volume Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crack Density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stiffness Tensor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random Sequential Addition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Localization Tensor</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ehrlacher, Alain</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer Vienna, 1965</subfield><subfield code="g">225(2014), 9 vom: 05. Feb., Seite 2501-2519</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:225</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:9</subfield><subfield code="g">day:05</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:2501-2519</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00707-013-1082-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">225</subfield><subfield code="j">2014</subfield><subfield code="e">9</subfield><subfield code="b">05</subfield><subfield code="c">02</subfield><subfield code="h">2501-2519</subfield></datafield></record></collection>
|
score |
7.4007816 |