Transient electrohydrodynamics of compound drops
Abstract The transient electrohydrodynamics of a compound drop under a uniform electric field of small strength is investigated. A closed form analytical solution is developed for creeping flow regimes and fluid systems and drop sizes with moderate and/or large Ohnesorge numbers, in the framework of...
Ausführliche Beschreibung
Autor*in: |
Behjatian, Ali [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Wien 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta mechanica - Springer Vienna, 1965, 226(2015), 8 vom: 22. März, Seite 2581-2606 |
---|---|
Übergeordnetes Werk: |
volume:226 ; year:2015 ; number:8 ; day:22 ; month:03 ; pages:2581-2606 |
Links: |
---|
DOI / URN: |
10.1007/s00707-015-1335-1 |
---|
Katalog-ID: |
OLC2030143634 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2030143634 | ||
003 | DE-627 | ||
005 | 20230502143320.0 | ||
007 | tu | ||
008 | 200820s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00707-015-1335-1 |2 doi | |
035 | |a (DE-627)OLC2030143634 | ||
035 | |a (DE-He213)s00707-015-1335-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Behjatian, Ali |e verfasserin |4 aut | |
245 | 1 | 0 | |a Transient electrohydrodynamics of compound drops |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Wien 2015 | ||
520 | |a Abstract The transient electrohydrodynamics of a compound drop under a uniform electric field of small strength is investigated. A closed form analytical solution is developed for creeping flow regimes and fluid systems and drop sizes with moderate and/or large Ohnesorge numbers, in the framework of leaky dielectric theory. For small distortion from a spherical shape, the inner and the outer drops deform to ellipsoids, and their deformation–time histories can be represented by $$ , where ij = 12,23 refers to the surfaces of the inner and the outer drops, $${\tau_1}$$ and $${\tau_2}$$ are the characteristic times, Aij and Bij are the coefficients that depend on the input parameters of the system, and $${\mathcal{D}^\infty_{ij}}$$ are the steady-state deformation parameters. The evolution of the flow field for several fluid systems was explored, and it was shown that the ratios of electric conductivities and permittivities of the participating fluids play a key role in determining the evolution of the flow field toward the steady state and that the steady-state flow is established by the motion of toroidal vortices that are formed in the drops and move outward, or formed in the ambient fluid and move inward. | ||
650 | 4 | |a Vortex | |
650 | 4 | |a Prolate | |
650 | 4 | |a Closed Form Analytical Solution | |
650 | 4 | |a Toroidal Vortex | |
650 | 4 | |a Electric Stress | |
700 | 1 | |a Esmaeeli, Asghar |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Acta mechanica |d Springer Vienna, 1965 |g 226(2015), 8 vom: 22. März, Seite 2581-2606 |w (DE-627)129511676 |w (DE-600)210328-X |w (DE-576)014919141 |x 0001-5970 |7 nnns |
773 | 1 | 8 | |g volume:226 |g year:2015 |g number:8 |g day:22 |g month:03 |g pages:2581-2606 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00707-015-1335-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 226 |j 2015 |e 8 |b 22 |c 03 |h 2581-2606 |
author_variant |
a b ab a e ae |
---|---|
matchkey_str |
article:00015970:2015----::rnineetoyrdnmcoc |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s00707-015-1335-1 doi (DE-627)OLC2030143634 (DE-He213)s00707-015-1335-1-p DE-627 ger DE-627 rakwb eng 530 VZ Behjatian, Ali verfasserin aut Transient electrohydrodynamics of compound drops 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract The transient electrohydrodynamics of a compound drop under a uniform electric field of small strength is investigated. A closed form analytical solution is developed for creeping flow regimes and fluid systems and drop sizes with moderate and/or large Ohnesorge numbers, in the framework of leaky dielectric theory. For small distortion from a spherical shape, the inner and the outer drops deform to ellipsoids, and their deformation–time histories can be represented by $$ , where ij = 12,23 refers to the surfaces of the inner and the outer drops, $${\tau_1}$$ and $${\tau_2}$$ are the characteristic times, Aij and Bij are the coefficients that depend on the input parameters of the system, and $${\mathcal{D}^\infty_{ij}}$$ are the steady-state deformation parameters. The evolution of the flow field for several fluid systems was explored, and it was shown that the ratios of electric conductivities and permittivities of the participating fluids play a key role in determining the evolution of the flow field toward the steady state and that the steady-state flow is established by the motion of toroidal vortices that are formed in the drops and move outward, or formed in the ambient fluid and move inward. Vortex Prolate Closed Form Analytical Solution Toroidal Vortex Electric Stress Esmaeeli, Asghar aut Enthalten in Acta mechanica Springer Vienna, 1965 226(2015), 8 vom: 22. März, Seite 2581-2606 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:226 year:2015 number:8 day:22 month:03 pages:2581-2606 https://doi.org/10.1007/s00707-015-1335-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 AR 226 2015 8 22 03 2581-2606 |
spelling |
10.1007/s00707-015-1335-1 doi (DE-627)OLC2030143634 (DE-He213)s00707-015-1335-1-p DE-627 ger DE-627 rakwb eng 530 VZ Behjatian, Ali verfasserin aut Transient electrohydrodynamics of compound drops 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract The transient electrohydrodynamics of a compound drop under a uniform electric field of small strength is investigated. A closed form analytical solution is developed for creeping flow regimes and fluid systems and drop sizes with moderate and/or large Ohnesorge numbers, in the framework of leaky dielectric theory. For small distortion from a spherical shape, the inner and the outer drops deform to ellipsoids, and their deformation–time histories can be represented by $$ , where ij = 12,23 refers to the surfaces of the inner and the outer drops, $${\tau_1}$$ and $${\tau_2}$$ are the characteristic times, Aij and Bij are the coefficients that depend on the input parameters of the system, and $${\mathcal{D}^\infty_{ij}}$$ are the steady-state deformation parameters. The evolution of the flow field for several fluid systems was explored, and it was shown that the ratios of electric conductivities and permittivities of the participating fluids play a key role in determining the evolution of the flow field toward the steady state and that the steady-state flow is established by the motion of toroidal vortices that are formed in the drops and move outward, or formed in the ambient fluid and move inward. Vortex Prolate Closed Form Analytical Solution Toroidal Vortex Electric Stress Esmaeeli, Asghar aut Enthalten in Acta mechanica Springer Vienna, 1965 226(2015), 8 vom: 22. März, Seite 2581-2606 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:226 year:2015 number:8 day:22 month:03 pages:2581-2606 https://doi.org/10.1007/s00707-015-1335-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 AR 226 2015 8 22 03 2581-2606 |
allfields_unstemmed |
10.1007/s00707-015-1335-1 doi (DE-627)OLC2030143634 (DE-He213)s00707-015-1335-1-p DE-627 ger DE-627 rakwb eng 530 VZ Behjatian, Ali verfasserin aut Transient electrohydrodynamics of compound drops 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract The transient electrohydrodynamics of a compound drop under a uniform electric field of small strength is investigated. A closed form analytical solution is developed for creeping flow regimes and fluid systems and drop sizes with moderate and/or large Ohnesorge numbers, in the framework of leaky dielectric theory. For small distortion from a spherical shape, the inner and the outer drops deform to ellipsoids, and their deformation–time histories can be represented by $$ , where ij = 12,23 refers to the surfaces of the inner and the outer drops, $${\tau_1}$$ and $${\tau_2}$$ are the characteristic times, Aij and Bij are the coefficients that depend on the input parameters of the system, and $${\mathcal{D}^\infty_{ij}}$$ are the steady-state deformation parameters. The evolution of the flow field for several fluid systems was explored, and it was shown that the ratios of electric conductivities and permittivities of the participating fluids play a key role in determining the evolution of the flow field toward the steady state and that the steady-state flow is established by the motion of toroidal vortices that are formed in the drops and move outward, or formed in the ambient fluid and move inward. Vortex Prolate Closed Form Analytical Solution Toroidal Vortex Electric Stress Esmaeeli, Asghar aut Enthalten in Acta mechanica Springer Vienna, 1965 226(2015), 8 vom: 22. März, Seite 2581-2606 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:226 year:2015 number:8 day:22 month:03 pages:2581-2606 https://doi.org/10.1007/s00707-015-1335-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 AR 226 2015 8 22 03 2581-2606 |
allfieldsGer |
10.1007/s00707-015-1335-1 doi (DE-627)OLC2030143634 (DE-He213)s00707-015-1335-1-p DE-627 ger DE-627 rakwb eng 530 VZ Behjatian, Ali verfasserin aut Transient electrohydrodynamics of compound drops 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract The transient electrohydrodynamics of a compound drop under a uniform electric field of small strength is investigated. A closed form analytical solution is developed for creeping flow regimes and fluid systems and drop sizes with moderate and/or large Ohnesorge numbers, in the framework of leaky dielectric theory. For small distortion from a spherical shape, the inner and the outer drops deform to ellipsoids, and their deformation–time histories can be represented by $$ , where ij = 12,23 refers to the surfaces of the inner and the outer drops, $${\tau_1}$$ and $${\tau_2}$$ are the characteristic times, Aij and Bij are the coefficients that depend on the input parameters of the system, and $${\mathcal{D}^\infty_{ij}}$$ are the steady-state deformation parameters. The evolution of the flow field for several fluid systems was explored, and it was shown that the ratios of electric conductivities and permittivities of the participating fluids play a key role in determining the evolution of the flow field toward the steady state and that the steady-state flow is established by the motion of toroidal vortices that are formed in the drops and move outward, or formed in the ambient fluid and move inward. Vortex Prolate Closed Form Analytical Solution Toroidal Vortex Electric Stress Esmaeeli, Asghar aut Enthalten in Acta mechanica Springer Vienna, 1965 226(2015), 8 vom: 22. März, Seite 2581-2606 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:226 year:2015 number:8 day:22 month:03 pages:2581-2606 https://doi.org/10.1007/s00707-015-1335-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 AR 226 2015 8 22 03 2581-2606 |
allfieldsSound |
10.1007/s00707-015-1335-1 doi (DE-627)OLC2030143634 (DE-He213)s00707-015-1335-1-p DE-627 ger DE-627 rakwb eng 530 VZ Behjatian, Ali verfasserin aut Transient electrohydrodynamics of compound drops 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract The transient electrohydrodynamics of a compound drop under a uniform electric field of small strength is investigated. A closed form analytical solution is developed for creeping flow regimes and fluid systems and drop sizes with moderate and/or large Ohnesorge numbers, in the framework of leaky dielectric theory. For small distortion from a spherical shape, the inner and the outer drops deform to ellipsoids, and their deformation–time histories can be represented by $$ , where ij = 12,23 refers to the surfaces of the inner and the outer drops, $${\tau_1}$$ and $${\tau_2}$$ are the characteristic times, Aij and Bij are the coefficients that depend on the input parameters of the system, and $${\mathcal{D}^\infty_{ij}}$$ are the steady-state deformation parameters. The evolution of the flow field for several fluid systems was explored, and it was shown that the ratios of electric conductivities and permittivities of the participating fluids play a key role in determining the evolution of the flow field toward the steady state and that the steady-state flow is established by the motion of toroidal vortices that are formed in the drops and move outward, or formed in the ambient fluid and move inward. Vortex Prolate Closed Form Analytical Solution Toroidal Vortex Electric Stress Esmaeeli, Asghar aut Enthalten in Acta mechanica Springer Vienna, 1965 226(2015), 8 vom: 22. März, Seite 2581-2606 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:226 year:2015 number:8 day:22 month:03 pages:2581-2606 https://doi.org/10.1007/s00707-015-1335-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 AR 226 2015 8 22 03 2581-2606 |
language |
English |
source |
Enthalten in Acta mechanica 226(2015), 8 vom: 22. März, Seite 2581-2606 volume:226 year:2015 number:8 day:22 month:03 pages:2581-2606 |
sourceStr |
Enthalten in Acta mechanica 226(2015), 8 vom: 22. März, Seite 2581-2606 volume:226 year:2015 number:8 day:22 month:03 pages:2581-2606 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Vortex Prolate Closed Form Analytical Solution Toroidal Vortex Electric Stress |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Acta mechanica |
authorswithroles_txt_mv |
Behjatian, Ali @@aut@@ Esmaeeli, Asghar @@aut@@ |
publishDateDaySort_date |
2015-03-22T00:00:00Z |
hierarchy_top_id |
129511676 |
dewey-sort |
3530 |
id |
OLC2030143634 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030143634</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502143320.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00707-015-1335-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030143634</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00707-015-1335-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Behjatian, Ali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transient electrohydrodynamics of compound drops</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Wien 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The transient electrohydrodynamics of a compound drop under a uniform electric field of small strength is investigated. A closed form analytical solution is developed for creeping flow regimes and fluid systems and drop sizes with moderate and/or large Ohnesorge numbers, in the framework of leaky dielectric theory. For small distortion from a spherical shape, the inner and the outer drops deform to ellipsoids, and their deformation–time histories can be represented by $$ , where ij = 12,23 refers to the surfaces of the inner and the outer drops, $${\tau_1}$$ and $${\tau_2}$$ are the characteristic times, Aij and Bij are the coefficients that depend on the input parameters of the system, and $${\mathcal{D}^\infty_{ij}}$$ are the steady-state deformation parameters. The evolution of the flow field for several fluid systems was explored, and it was shown that the ratios of electric conductivities and permittivities of the participating fluids play a key role in determining the evolution of the flow field toward the steady state and that the steady-state flow is established by the motion of toroidal vortices that are formed in the drops and move outward, or formed in the ambient fluid and move inward.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vortex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prolate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Closed Form Analytical Solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toroidal Vortex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric Stress</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Esmaeeli, Asghar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer Vienna, 1965</subfield><subfield code="g">226(2015), 8 vom: 22. März, Seite 2581-2606</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:226</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:8</subfield><subfield code="g">day:22</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:2581-2606</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00707-015-1335-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">226</subfield><subfield code="j">2015</subfield><subfield code="e">8</subfield><subfield code="b">22</subfield><subfield code="c">03</subfield><subfield code="h">2581-2606</subfield></datafield></record></collection>
|
author |
Behjatian, Ali |
spellingShingle |
Behjatian, Ali ddc 530 misc Vortex misc Prolate misc Closed Form Analytical Solution misc Toroidal Vortex misc Electric Stress Transient electrohydrodynamics of compound drops |
authorStr |
Behjatian, Ali |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129511676 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-5970 |
topic_title |
530 VZ Transient electrohydrodynamics of compound drops Vortex Prolate Closed Form Analytical Solution Toroidal Vortex Electric Stress |
topic |
ddc 530 misc Vortex misc Prolate misc Closed Form Analytical Solution misc Toroidal Vortex misc Electric Stress |
topic_unstemmed |
ddc 530 misc Vortex misc Prolate misc Closed Form Analytical Solution misc Toroidal Vortex misc Electric Stress |
topic_browse |
ddc 530 misc Vortex misc Prolate misc Closed Form Analytical Solution misc Toroidal Vortex misc Electric Stress |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta mechanica |
hierarchy_parent_id |
129511676 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Acta mechanica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129511676 (DE-600)210328-X (DE-576)014919141 |
title |
Transient electrohydrodynamics of compound drops |
ctrlnum |
(DE-627)OLC2030143634 (DE-He213)s00707-015-1335-1-p |
title_full |
Transient electrohydrodynamics of compound drops |
author_sort |
Behjatian, Ali |
journal |
Acta mechanica |
journalStr |
Acta mechanica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
2581 |
author_browse |
Behjatian, Ali Esmaeeli, Asghar |
container_volume |
226 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Behjatian, Ali |
doi_str_mv |
10.1007/s00707-015-1335-1 |
dewey-full |
530 |
title_sort |
transient electrohydrodynamics of compound drops |
title_auth |
Transient electrohydrodynamics of compound drops |
abstract |
Abstract The transient electrohydrodynamics of a compound drop under a uniform electric field of small strength is investigated. A closed form analytical solution is developed for creeping flow regimes and fluid systems and drop sizes with moderate and/or large Ohnesorge numbers, in the framework of leaky dielectric theory. For small distortion from a spherical shape, the inner and the outer drops deform to ellipsoids, and their deformation–time histories can be represented by $$ , where ij = 12,23 refers to the surfaces of the inner and the outer drops, $${\tau_1}$$ and $${\tau_2}$$ are the characteristic times, Aij and Bij are the coefficients that depend on the input parameters of the system, and $${\mathcal{D}^\infty_{ij}}$$ are the steady-state deformation parameters. The evolution of the flow field for several fluid systems was explored, and it was shown that the ratios of electric conductivities and permittivities of the participating fluids play a key role in determining the evolution of the flow field toward the steady state and that the steady-state flow is established by the motion of toroidal vortices that are formed in the drops and move outward, or formed in the ambient fluid and move inward. © Springer-Verlag Wien 2015 |
abstractGer |
Abstract The transient electrohydrodynamics of a compound drop under a uniform electric field of small strength is investigated. A closed form analytical solution is developed for creeping flow regimes and fluid systems and drop sizes with moderate and/or large Ohnesorge numbers, in the framework of leaky dielectric theory. For small distortion from a spherical shape, the inner and the outer drops deform to ellipsoids, and their deformation–time histories can be represented by $$ , where ij = 12,23 refers to the surfaces of the inner and the outer drops, $${\tau_1}$$ and $${\tau_2}$$ are the characteristic times, Aij and Bij are the coefficients that depend on the input parameters of the system, and $${\mathcal{D}^\infty_{ij}}$$ are the steady-state deformation parameters. The evolution of the flow field for several fluid systems was explored, and it was shown that the ratios of electric conductivities and permittivities of the participating fluids play a key role in determining the evolution of the flow field toward the steady state and that the steady-state flow is established by the motion of toroidal vortices that are formed in the drops and move outward, or formed in the ambient fluid and move inward. © Springer-Verlag Wien 2015 |
abstract_unstemmed |
Abstract The transient electrohydrodynamics of a compound drop under a uniform electric field of small strength is investigated. A closed form analytical solution is developed for creeping flow regimes and fluid systems and drop sizes with moderate and/or large Ohnesorge numbers, in the framework of leaky dielectric theory. For small distortion from a spherical shape, the inner and the outer drops deform to ellipsoids, and their deformation–time histories can be represented by $$ , where ij = 12,23 refers to the surfaces of the inner and the outer drops, $${\tau_1}$$ and $${\tau_2}$$ are the characteristic times, Aij and Bij are the coefficients that depend on the input parameters of the system, and $${\mathcal{D}^\infty_{ij}}$$ are the steady-state deformation parameters. The evolution of the flow field for several fluid systems was explored, and it was shown that the ratios of electric conductivities and permittivities of the participating fluids play a key role in determining the evolution of the flow field toward the steady state and that the steady-state flow is established by the motion of toroidal vortices that are formed in the drops and move outward, or formed in the ambient fluid and move inward. © Springer-Verlag Wien 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 |
container_issue |
8 |
title_short |
Transient electrohydrodynamics of compound drops |
url |
https://doi.org/10.1007/s00707-015-1335-1 |
remote_bool |
false |
author2 |
Esmaeeli, Asghar |
author2Str |
Esmaeeli, Asghar |
ppnlink |
129511676 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00707-015-1335-1 |
up_date |
2024-07-04T01:23:30.082Z |
_version_ |
1803609660545040384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030143634</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502143320.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00707-015-1335-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030143634</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00707-015-1335-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Behjatian, Ali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transient electrohydrodynamics of compound drops</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Wien 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The transient electrohydrodynamics of a compound drop under a uniform electric field of small strength is investigated. A closed form analytical solution is developed for creeping flow regimes and fluid systems and drop sizes with moderate and/or large Ohnesorge numbers, in the framework of leaky dielectric theory. For small distortion from a spherical shape, the inner and the outer drops deform to ellipsoids, and their deformation–time histories can be represented by $$ , where ij = 12,23 refers to the surfaces of the inner and the outer drops, $${\tau_1}$$ and $${\tau_2}$$ are the characteristic times, Aij and Bij are the coefficients that depend on the input parameters of the system, and $${\mathcal{D}^\infty_{ij}}$$ are the steady-state deformation parameters. The evolution of the flow field for several fluid systems was explored, and it was shown that the ratios of electric conductivities and permittivities of the participating fluids play a key role in determining the evolution of the flow field toward the steady state and that the steady-state flow is established by the motion of toroidal vortices that are formed in the drops and move outward, or formed in the ambient fluid and move inward.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vortex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prolate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Closed Form Analytical Solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toroidal Vortex</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric Stress</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Esmaeeli, Asghar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer Vienna, 1965</subfield><subfield code="g">226(2015), 8 vom: 22. März, Seite 2581-2606</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:226</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:8</subfield><subfield code="g">day:22</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:2581-2606</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00707-015-1335-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">226</subfield><subfield code="j">2015</subfield><subfield code="e">8</subfield><subfield code="b">22</subfield><subfield code="c">03</subfield><subfield code="h">2581-2606</subfield></datafield></record></collection>
|
score |
7.400729 |