Time-dependent analysis of 3D thermo-mechanical behavior of a layered half-space with anisotropic thermal diffusivity
Abstract A coupled analytical layer-element solution is presented to study the three-dimensional thermo-mechanical behavior of layered material with anisotropic thermal diffusivity in Cartesian coordinates. From the governing equations of three-dimensional thermo-elastic material, the coupled analyt...
Ausführliche Beschreibung
Autor*in: |
Ai, Zhi Yong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Wien 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta mechanica - Springer Vienna, 1965, 226(2015), 9 vom: 01. Mai, Seite 2939-2954 |
---|---|
Übergeordnetes Werk: |
volume:226 ; year:2015 ; number:9 ; day:01 ; month:05 ; pages:2939-2954 |
Links: |
---|
DOI / URN: |
10.1007/s00707-015-1360-0 |
---|
Katalog-ID: |
OLC2030143766 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2030143766 | ||
003 | DE-627 | ||
005 | 20230502143321.0 | ||
007 | tu | ||
008 | 200820s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00707-015-1360-0 |2 doi | |
035 | |a (DE-627)OLC2030143766 | ||
035 | |a (DE-He213)s00707-015-1360-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Ai, Zhi Yong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Time-dependent analysis of 3D thermo-mechanical behavior of a layered half-space with anisotropic thermal diffusivity |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Wien 2015 | ||
520 | |a Abstract A coupled analytical layer-element solution is presented to study the three-dimensional thermo-mechanical behavior of layered material with anisotropic thermal diffusivity in Cartesian coordinates. From the governing equations of three-dimensional thermo-elastic material, the coupled analytical layer elements expressing the relation between generalized displacements and stresses of a single finite layer and the underlying half-space are derived by the Laplace transform and the double Fourier transform. Considering the continuity conditions between adjacent layers and the boundary conditions, the global stiffness matrix of the multilayered half-space is assembled and solved in transformed domain. The real solutions in the physical domain are obtained by applying numerical quadrature schemes for the Laplace–Fourier transform inverse. Finally, numerical computations are carried out to investigate the time-dependent thermo-mechanical response of the material system. | ||
650 | 4 | |a Heat Source | |
650 | 4 | |a Thermoelastic Problem | |
650 | 4 | |a Point Heat Source | |
650 | 4 | |a Energy Pile | |
650 | 4 | |a Layered Material System | |
700 | 1 | |a Wang, Lu Jun |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Acta mechanica |d Springer Vienna, 1965 |g 226(2015), 9 vom: 01. Mai, Seite 2939-2954 |w (DE-627)129511676 |w (DE-600)210328-X |w (DE-576)014919141 |x 0001-5970 |7 nnns |
773 | 1 | 8 | |g volume:226 |g year:2015 |g number:9 |g day:01 |g month:05 |g pages:2939-2954 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00707-015-1360-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 226 |j 2015 |e 9 |b 01 |c 05 |h 2939-2954 |
author_variant |
z y a zy zya l j w lj ljw |
---|---|
matchkey_str |
article:00015970:2015----::ieeednaayio3temmcaiabhvooaaeehlsaeihn |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s00707-015-1360-0 doi (DE-627)OLC2030143766 (DE-He213)s00707-015-1360-0-p DE-627 ger DE-627 rakwb eng 530 VZ Ai, Zhi Yong verfasserin aut Time-dependent analysis of 3D thermo-mechanical behavior of a layered half-space with anisotropic thermal diffusivity 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract A coupled analytical layer-element solution is presented to study the three-dimensional thermo-mechanical behavior of layered material with anisotropic thermal diffusivity in Cartesian coordinates. From the governing equations of three-dimensional thermo-elastic material, the coupled analytical layer elements expressing the relation between generalized displacements and stresses of a single finite layer and the underlying half-space are derived by the Laplace transform and the double Fourier transform. Considering the continuity conditions between adjacent layers and the boundary conditions, the global stiffness matrix of the multilayered half-space is assembled and solved in transformed domain. The real solutions in the physical domain are obtained by applying numerical quadrature schemes for the Laplace–Fourier transform inverse. Finally, numerical computations are carried out to investigate the time-dependent thermo-mechanical response of the material system. Heat Source Thermoelastic Problem Point Heat Source Energy Pile Layered Material System Wang, Lu Jun aut Enthalten in Acta mechanica Springer Vienna, 1965 226(2015), 9 vom: 01. Mai, Seite 2939-2954 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:226 year:2015 number:9 day:01 month:05 pages:2939-2954 https://doi.org/10.1007/s00707-015-1360-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 AR 226 2015 9 01 05 2939-2954 |
spelling |
10.1007/s00707-015-1360-0 doi (DE-627)OLC2030143766 (DE-He213)s00707-015-1360-0-p DE-627 ger DE-627 rakwb eng 530 VZ Ai, Zhi Yong verfasserin aut Time-dependent analysis of 3D thermo-mechanical behavior of a layered half-space with anisotropic thermal diffusivity 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract A coupled analytical layer-element solution is presented to study the three-dimensional thermo-mechanical behavior of layered material with anisotropic thermal diffusivity in Cartesian coordinates. From the governing equations of three-dimensional thermo-elastic material, the coupled analytical layer elements expressing the relation between generalized displacements and stresses of a single finite layer and the underlying half-space are derived by the Laplace transform and the double Fourier transform. Considering the continuity conditions between adjacent layers and the boundary conditions, the global stiffness matrix of the multilayered half-space is assembled and solved in transformed domain. The real solutions in the physical domain are obtained by applying numerical quadrature schemes for the Laplace–Fourier transform inverse. Finally, numerical computations are carried out to investigate the time-dependent thermo-mechanical response of the material system. Heat Source Thermoelastic Problem Point Heat Source Energy Pile Layered Material System Wang, Lu Jun aut Enthalten in Acta mechanica Springer Vienna, 1965 226(2015), 9 vom: 01. Mai, Seite 2939-2954 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:226 year:2015 number:9 day:01 month:05 pages:2939-2954 https://doi.org/10.1007/s00707-015-1360-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 AR 226 2015 9 01 05 2939-2954 |
allfields_unstemmed |
10.1007/s00707-015-1360-0 doi (DE-627)OLC2030143766 (DE-He213)s00707-015-1360-0-p DE-627 ger DE-627 rakwb eng 530 VZ Ai, Zhi Yong verfasserin aut Time-dependent analysis of 3D thermo-mechanical behavior of a layered half-space with anisotropic thermal diffusivity 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract A coupled analytical layer-element solution is presented to study the three-dimensional thermo-mechanical behavior of layered material with anisotropic thermal diffusivity in Cartesian coordinates. From the governing equations of three-dimensional thermo-elastic material, the coupled analytical layer elements expressing the relation between generalized displacements and stresses of a single finite layer and the underlying half-space are derived by the Laplace transform and the double Fourier transform. Considering the continuity conditions between adjacent layers and the boundary conditions, the global stiffness matrix of the multilayered half-space is assembled and solved in transformed domain. The real solutions in the physical domain are obtained by applying numerical quadrature schemes for the Laplace–Fourier transform inverse. Finally, numerical computations are carried out to investigate the time-dependent thermo-mechanical response of the material system. Heat Source Thermoelastic Problem Point Heat Source Energy Pile Layered Material System Wang, Lu Jun aut Enthalten in Acta mechanica Springer Vienna, 1965 226(2015), 9 vom: 01. Mai, Seite 2939-2954 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:226 year:2015 number:9 day:01 month:05 pages:2939-2954 https://doi.org/10.1007/s00707-015-1360-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 AR 226 2015 9 01 05 2939-2954 |
allfieldsGer |
10.1007/s00707-015-1360-0 doi (DE-627)OLC2030143766 (DE-He213)s00707-015-1360-0-p DE-627 ger DE-627 rakwb eng 530 VZ Ai, Zhi Yong verfasserin aut Time-dependent analysis of 3D thermo-mechanical behavior of a layered half-space with anisotropic thermal diffusivity 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract A coupled analytical layer-element solution is presented to study the three-dimensional thermo-mechanical behavior of layered material with anisotropic thermal diffusivity in Cartesian coordinates. From the governing equations of three-dimensional thermo-elastic material, the coupled analytical layer elements expressing the relation between generalized displacements and stresses of a single finite layer and the underlying half-space are derived by the Laplace transform and the double Fourier transform. Considering the continuity conditions between adjacent layers and the boundary conditions, the global stiffness matrix of the multilayered half-space is assembled and solved in transformed domain. The real solutions in the physical domain are obtained by applying numerical quadrature schemes for the Laplace–Fourier transform inverse. Finally, numerical computations are carried out to investigate the time-dependent thermo-mechanical response of the material system. Heat Source Thermoelastic Problem Point Heat Source Energy Pile Layered Material System Wang, Lu Jun aut Enthalten in Acta mechanica Springer Vienna, 1965 226(2015), 9 vom: 01. Mai, Seite 2939-2954 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:226 year:2015 number:9 day:01 month:05 pages:2939-2954 https://doi.org/10.1007/s00707-015-1360-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 AR 226 2015 9 01 05 2939-2954 |
allfieldsSound |
10.1007/s00707-015-1360-0 doi (DE-627)OLC2030143766 (DE-He213)s00707-015-1360-0-p DE-627 ger DE-627 rakwb eng 530 VZ Ai, Zhi Yong verfasserin aut Time-dependent analysis of 3D thermo-mechanical behavior of a layered half-space with anisotropic thermal diffusivity 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract A coupled analytical layer-element solution is presented to study the three-dimensional thermo-mechanical behavior of layered material with anisotropic thermal diffusivity in Cartesian coordinates. From the governing equations of three-dimensional thermo-elastic material, the coupled analytical layer elements expressing the relation between generalized displacements and stresses of a single finite layer and the underlying half-space are derived by the Laplace transform and the double Fourier transform. Considering the continuity conditions between adjacent layers and the boundary conditions, the global stiffness matrix of the multilayered half-space is assembled and solved in transformed domain. The real solutions in the physical domain are obtained by applying numerical quadrature schemes for the Laplace–Fourier transform inverse. Finally, numerical computations are carried out to investigate the time-dependent thermo-mechanical response of the material system. Heat Source Thermoelastic Problem Point Heat Source Energy Pile Layered Material System Wang, Lu Jun aut Enthalten in Acta mechanica Springer Vienna, 1965 226(2015), 9 vom: 01. Mai, Seite 2939-2954 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:226 year:2015 number:9 day:01 month:05 pages:2939-2954 https://doi.org/10.1007/s00707-015-1360-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 AR 226 2015 9 01 05 2939-2954 |
language |
English |
source |
Enthalten in Acta mechanica 226(2015), 9 vom: 01. Mai, Seite 2939-2954 volume:226 year:2015 number:9 day:01 month:05 pages:2939-2954 |
sourceStr |
Enthalten in Acta mechanica 226(2015), 9 vom: 01. Mai, Seite 2939-2954 volume:226 year:2015 number:9 day:01 month:05 pages:2939-2954 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Heat Source Thermoelastic Problem Point Heat Source Energy Pile Layered Material System |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Acta mechanica |
authorswithroles_txt_mv |
Ai, Zhi Yong @@aut@@ Wang, Lu Jun @@aut@@ |
publishDateDaySort_date |
2015-05-01T00:00:00Z |
hierarchy_top_id |
129511676 |
dewey-sort |
3530 |
id |
OLC2030143766 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030143766</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502143321.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00707-015-1360-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030143766</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00707-015-1360-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ai, Zhi Yong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Time-dependent analysis of 3D thermo-mechanical behavior of a layered half-space with anisotropic thermal diffusivity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Wien 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A coupled analytical layer-element solution is presented to study the three-dimensional thermo-mechanical behavior of layered material with anisotropic thermal diffusivity in Cartesian coordinates. From the governing equations of three-dimensional thermo-elastic material, the coupled analytical layer elements expressing the relation between generalized displacements and stresses of a single finite layer and the underlying half-space are derived by the Laplace transform and the double Fourier transform. Considering the continuity conditions between adjacent layers and the boundary conditions, the global stiffness matrix of the multilayered half-space is assembled and solved in transformed domain. The real solutions in the physical domain are obtained by applying numerical quadrature schemes for the Laplace–Fourier transform inverse. Finally, numerical computations are carried out to investigate the time-dependent thermo-mechanical response of the material system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat Source</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermoelastic Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Point Heat Source</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy Pile</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Layered Material System</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Lu Jun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer Vienna, 1965</subfield><subfield code="g">226(2015), 9 vom: 01. Mai, Seite 2939-2954</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:226</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:9</subfield><subfield code="g">day:01</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:2939-2954</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00707-015-1360-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">226</subfield><subfield code="j">2015</subfield><subfield code="e">9</subfield><subfield code="b">01</subfield><subfield code="c">05</subfield><subfield code="h">2939-2954</subfield></datafield></record></collection>
|
author |
Ai, Zhi Yong |
spellingShingle |
Ai, Zhi Yong ddc 530 misc Heat Source misc Thermoelastic Problem misc Point Heat Source misc Energy Pile misc Layered Material System Time-dependent analysis of 3D thermo-mechanical behavior of a layered half-space with anisotropic thermal diffusivity |
authorStr |
Ai, Zhi Yong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129511676 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-5970 |
topic_title |
530 VZ Time-dependent analysis of 3D thermo-mechanical behavior of a layered half-space with anisotropic thermal diffusivity Heat Source Thermoelastic Problem Point Heat Source Energy Pile Layered Material System |
topic |
ddc 530 misc Heat Source misc Thermoelastic Problem misc Point Heat Source misc Energy Pile misc Layered Material System |
topic_unstemmed |
ddc 530 misc Heat Source misc Thermoelastic Problem misc Point Heat Source misc Energy Pile misc Layered Material System |
topic_browse |
ddc 530 misc Heat Source misc Thermoelastic Problem misc Point Heat Source misc Energy Pile misc Layered Material System |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta mechanica |
hierarchy_parent_id |
129511676 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Acta mechanica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129511676 (DE-600)210328-X (DE-576)014919141 |
title |
Time-dependent analysis of 3D thermo-mechanical behavior of a layered half-space with anisotropic thermal diffusivity |
ctrlnum |
(DE-627)OLC2030143766 (DE-He213)s00707-015-1360-0-p |
title_full |
Time-dependent analysis of 3D thermo-mechanical behavior of a layered half-space with anisotropic thermal diffusivity |
author_sort |
Ai, Zhi Yong |
journal |
Acta mechanica |
journalStr |
Acta mechanica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
2939 |
author_browse |
Ai, Zhi Yong Wang, Lu Jun |
container_volume |
226 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Ai, Zhi Yong |
doi_str_mv |
10.1007/s00707-015-1360-0 |
dewey-full |
530 |
title_sort |
time-dependent analysis of 3d thermo-mechanical behavior of a layered half-space with anisotropic thermal diffusivity |
title_auth |
Time-dependent analysis of 3D thermo-mechanical behavior of a layered half-space with anisotropic thermal diffusivity |
abstract |
Abstract A coupled analytical layer-element solution is presented to study the three-dimensional thermo-mechanical behavior of layered material with anisotropic thermal diffusivity in Cartesian coordinates. From the governing equations of three-dimensional thermo-elastic material, the coupled analytical layer elements expressing the relation between generalized displacements and stresses of a single finite layer and the underlying half-space are derived by the Laplace transform and the double Fourier transform. Considering the continuity conditions between adjacent layers and the boundary conditions, the global stiffness matrix of the multilayered half-space is assembled and solved in transformed domain. The real solutions in the physical domain are obtained by applying numerical quadrature schemes for the Laplace–Fourier transform inverse. Finally, numerical computations are carried out to investigate the time-dependent thermo-mechanical response of the material system. © Springer-Verlag Wien 2015 |
abstractGer |
Abstract A coupled analytical layer-element solution is presented to study the three-dimensional thermo-mechanical behavior of layered material with anisotropic thermal diffusivity in Cartesian coordinates. From the governing equations of three-dimensional thermo-elastic material, the coupled analytical layer elements expressing the relation between generalized displacements and stresses of a single finite layer and the underlying half-space are derived by the Laplace transform and the double Fourier transform. Considering the continuity conditions between adjacent layers and the boundary conditions, the global stiffness matrix of the multilayered half-space is assembled and solved in transformed domain. The real solutions in the physical domain are obtained by applying numerical quadrature schemes for the Laplace–Fourier transform inverse. Finally, numerical computations are carried out to investigate the time-dependent thermo-mechanical response of the material system. © Springer-Verlag Wien 2015 |
abstract_unstemmed |
Abstract A coupled analytical layer-element solution is presented to study the three-dimensional thermo-mechanical behavior of layered material with anisotropic thermal diffusivity in Cartesian coordinates. From the governing equations of three-dimensional thermo-elastic material, the coupled analytical layer elements expressing the relation between generalized displacements and stresses of a single finite layer and the underlying half-space are derived by the Laplace transform and the double Fourier transform. Considering the continuity conditions between adjacent layers and the boundary conditions, the global stiffness matrix of the multilayered half-space is assembled and solved in transformed domain. The real solutions in the physical domain are obtained by applying numerical quadrature schemes for the Laplace–Fourier transform inverse. Finally, numerical computations are carried out to investigate the time-dependent thermo-mechanical response of the material system. © Springer-Verlag Wien 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 |
container_issue |
9 |
title_short |
Time-dependent analysis of 3D thermo-mechanical behavior of a layered half-space with anisotropic thermal diffusivity |
url |
https://doi.org/10.1007/s00707-015-1360-0 |
remote_bool |
false |
author2 |
Wang, Lu Jun |
author2Str |
Wang, Lu Jun |
ppnlink |
129511676 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00707-015-1360-0 |
up_date |
2024-07-04T01:23:31.357Z |
_version_ |
1803609661880926208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030143766</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502143321.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00707-015-1360-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030143766</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00707-015-1360-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ai, Zhi Yong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Time-dependent analysis of 3D thermo-mechanical behavior of a layered half-space with anisotropic thermal diffusivity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Wien 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A coupled analytical layer-element solution is presented to study the three-dimensional thermo-mechanical behavior of layered material with anisotropic thermal diffusivity in Cartesian coordinates. From the governing equations of three-dimensional thermo-elastic material, the coupled analytical layer elements expressing the relation between generalized displacements and stresses of a single finite layer and the underlying half-space are derived by the Laplace transform and the double Fourier transform. Considering the continuity conditions between adjacent layers and the boundary conditions, the global stiffness matrix of the multilayered half-space is assembled and solved in transformed domain. The real solutions in the physical domain are obtained by applying numerical quadrature schemes for the Laplace–Fourier transform inverse. Finally, numerical computations are carried out to investigate the time-dependent thermo-mechanical response of the material system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat Source</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermoelastic Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Point Heat Source</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy Pile</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Layered Material System</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Lu Jun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer Vienna, 1965</subfield><subfield code="g">226(2015), 9 vom: 01. Mai, Seite 2939-2954</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:226</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:9</subfield><subfield code="g">day:01</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:2939-2954</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00707-015-1360-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">226</subfield><subfield code="j">2015</subfield><subfield code="e">9</subfield><subfield code="b">01</subfield><subfield code="c">05</subfield><subfield code="h">2939-2954</subfield></datafield></record></collection>
|
score |
7.4017563 |