An analytical study on peeling of an adhesively bonded joint based on a viscoelastic Bernoulli–Euler beam model
Abstract Peeling of a thin film adhesively bonded to a rigid substrate is analytically studied using a Bernoulli–Euler beam theory for viscoelastic materials. The film (adherend) is modeled as a viscoelastic Bernoulli–Euler beam, and the normal and shear stresses on the film-adhesive interface are a...
Ausführliche Beschreibung
Autor*in: |
Gao, X.-L. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Wien 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta mechanica - Springer Vienna, 1965, 226(2015), 9 vom: 03. Mai, Seite 3059-3067 |
---|---|
Übergeordnetes Werk: |
volume:226 ; year:2015 ; number:9 ; day:03 ; month:05 ; pages:3059-3067 |
Links: |
---|
DOI / URN: |
10.1007/s00707-015-1357-8 |
---|
Katalog-ID: |
OLC2030143928 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2030143928 | ||
003 | DE-627 | ||
005 | 20230502143321.0 | ||
007 | tu | ||
008 | 200820s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00707-015-1357-8 |2 doi | |
035 | |a (DE-627)OLC2030143928 | ||
035 | |a (DE-He213)s00707-015-1357-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Gao, X.-L. |e verfasserin |4 aut | |
245 | 1 | 0 | |a An analytical study on peeling of an adhesively bonded joint based on a viscoelastic Bernoulli–Euler beam model |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Wien 2015 | ||
520 | |a Abstract Peeling of a thin film adhesively bonded to a rigid substrate is analytically studied using a Bernoulli–Euler beam theory for viscoelastic materials. The film (adherend) is modeled as a viscoelastic Bernoulli–Euler beam, and the normal and shear stresses on the film-adhesive interface are assumed to satisfy constant traction laws. Closed-form solutions are derived for the following two cases: (i) only the interfacial normal stress is present (mode I loading) and (ii) the interfacial shear stress is acting alone (mode II loading). The Boltzmann superposition integral is used to obtain the constitutive relations for the viscoelastic beam, and the methods of separation of variables and Laplace transforms are employed in the formulation. To illustrate the newly derived analytical solutions, sample cases are quantitatively studied. The three-parameter Kohlrausch–Williams–Watts model is adopted to compute the compliance. The numerical results show that both the vertical displacement under mode I loading and the horizontal displacement under mode II loading increase with time and/or temperature. | ||
650 | 4 | |a Timoshenko Beam | |
650 | 4 | |a Adhesive Joint | |
650 | 4 | |a Interfacial Shear Stress | |
650 | 4 | |a Cohesive Zone Model | |
650 | 4 | |a Peel Test | |
700 | 1 | |a Su, Y.-Y. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Acta mechanica |d Springer Vienna, 1965 |g 226(2015), 9 vom: 03. Mai, Seite 3059-3067 |w (DE-627)129511676 |w (DE-600)210328-X |w (DE-576)014919141 |x 0001-5970 |7 nnns |
773 | 1 | 8 | |g volume:226 |g year:2015 |g number:9 |g day:03 |g month:05 |g pages:3059-3067 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00707-015-1357-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 226 |j 2015 |e 9 |b 03 |c 05 |h 3059-3067 |
author_variant |
x l g xlg y y s yys |
---|---|
matchkey_str |
article:00015970:2015----::nnltcltdopeigfndeieyoddonbsdnvsols |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s00707-015-1357-8 doi (DE-627)OLC2030143928 (DE-He213)s00707-015-1357-8-p DE-627 ger DE-627 rakwb eng 530 VZ Gao, X.-L. verfasserin aut An analytical study on peeling of an adhesively bonded joint based on a viscoelastic Bernoulli–Euler beam model 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract Peeling of a thin film adhesively bonded to a rigid substrate is analytically studied using a Bernoulli–Euler beam theory for viscoelastic materials. The film (adherend) is modeled as a viscoelastic Bernoulli–Euler beam, and the normal and shear stresses on the film-adhesive interface are assumed to satisfy constant traction laws. Closed-form solutions are derived for the following two cases: (i) only the interfacial normal stress is present (mode I loading) and (ii) the interfacial shear stress is acting alone (mode II loading). The Boltzmann superposition integral is used to obtain the constitutive relations for the viscoelastic beam, and the methods of separation of variables and Laplace transforms are employed in the formulation. To illustrate the newly derived analytical solutions, sample cases are quantitatively studied. The three-parameter Kohlrausch–Williams–Watts model is adopted to compute the compliance. The numerical results show that both the vertical displacement under mode I loading and the horizontal displacement under mode II loading increase with time and/or temperature. Timoshenko Beam Adhesive Joint Interfacial Shear Stress Cohesive Zone Model Peel Test Su, Y.-Y. aut Enthalten in Acta mechanica Springer Vienna, 1965 226(2015), 9 vom: 03. Mai, Seite 3059-3067 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:226 year:2015 number:9 day:03 month:05 pages:3059-3067 https://doi.org/10.1007/s00707-015-1357-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 AR 226 2015 9 03 05 3059-3067 |
spelling |
10.1007/s00707-015-1357-8 doi (DE-627)OLC2030143928 (DE-He213)s00707-015-1357-8-p DE-627 ger DE-627 rakwb eng 530 VZ Gao, X.-L. verfasserin aut An analytical study on peeling of an adhesively bonded joint based on a viscoelastic Bernoulli–Euler beam model 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract Peeling of a thin film adhesively bonded to a rigid substrate is analytically studied using a Bernoulli–Euler beam theory for viscoelastic materials. The film (adherend) is modeled as a viscoelastic Bernoulli–Euler beam, and the normal and shear stresses on the film-adhesive interface are assumed to satisfy constant traction laws. Closed-form solutions are derived for the following two cases: (i) only the interfacial normal stress is present (mode I loading) and (ii) the interfacial shear stress is acting alone (mode II loading). The Boltzmann superposition integral is used to obtain the constitutive relations for the viscoelastic beam, and the methods of separation of variables and Laplace transforms are employed in the formulation. To illustrate the newly derived analytical solutions, sample cases are quantitatively studied. The three-parameter Kohlrausch–Williams–Watts model is adopted to compute the compliance. The numerical results show that both the vertical displacement under mode I loading and the horizontal displacement under mode II loading increase with time and/or temperature. Timoshenko Beam Adhesive Joint Interfacial Shear Stress Cohesive Zone Model Peel Test Su, Y.-Y. aut Enthalten in Acta mechanica Springer Vienna, 1965 226(2015), 9 vom: 03. Mai, Seite 3059-3067 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:226 year:2015 number:9 day:03 month:05 pages:3059-3067 https://doi.org/10.1007/s00707-015-1357-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 AR 226 2015 9 03 05 3059-3067 |
allfields_unstemmed |
10.1007/s00707-015-1357-8 doi (DE-627)OLC2030143928 (DE-He213)s00707-015-1357-8-p DE-627 ger DE-627 rakwb eng 530 VZ Gao, X.-L. verfasserin aut An analytical study on peeling of an adhesively bonded joint based on a viscoelastic Bernoulli–Euler beam model 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract Peeling of a thin film adhesively bonded to a rigid substrate is analytically studied using a Bernoulli–Euler beam theory for viscoelastic materials. The film (adherend) is modeled as a viscoelastic Bernoulli–Euler beam, and the normal and shear stresses on the film-adhesive interface are assumed to satisfy constant traction laws. Closed-form solutions are derived for the following two cases: (i) only the interfacial normal stress is present (mode I loading) and (ii) the interfacial shear stress is acting alone (mode II loading). The Boltzmann superposition integral is used to obtain the constitutive relations for the viscoelastic beam, and the methods of separation of variables and Laplace transforms are employed in the formulation. To illustrate the newly derived analytical solutions, sample cases are quantitatively studied. The three-parameter Kohlrausch–Williams–Watts model is adopted to compute the compliance. The numerical results show that both the vertical displacement under mode I loading and the horizontal displacement under mode II loading increase with time and/or temperature. Timoshenko Beam Adhesive Joint Interfacial Shear Stress Cohesive Zone Model Peel Test Su, Y.-Y. aut Enthalten in Acta mechanica Springer Vienna, 1965 226(2015), 9 vom: 03. Mai, Seite 3059-3067 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:226 year:2015 number:9 day:03 month:05 pages:3059-3067 https://doi.org/10.1007/s00707-015-1357-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 AR 226 2015 9 03 05 3059-3067 |
allfieldsGer |
10.1007/s00707-015-1357-8 doi (DE-627)OLC2030143928 (DE-He213)s00707-015-1357-8-p DE-627 ger DE-627 rakwb eng 530 VZ Gao, X.-L. verfasserin aut An analytical study on peeling of an adhesively bonded joint based on a viscoelastic Bernoulli–Euler beam model 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract Peeling of a thin film adhesively bonded to a rigid substrate is analytically studied using a Bernoulli–Euler beam theory for viscoelastic materials. The film (adherend) is modeled as a viscoelastic Bernoulli–Euler beam, and the normal and shear stresses on the film-adhesive interface are assumed to satisfy constant traction laws. Closed-form solutions are derived for the following two cases: (i) only the interfacial normal stress is present (mode I loading) and (ii) the interfacial shear stress is acting alone (mode II loading). The Boltzmann superposition integral is used to obtain the constitutive relations for the viscoelastic beam, and the methods of separation of variables and Laplace transforms are employed in the formulation. To illustrate the newly derived analytical solutions, sample cases are quantitatively studied. The three-parameter Kohlrausch–Williams–Watts model is adopted to compute the compliance. The numerical results show that both the vertical displacement under mode I loading and the horizontal displacement under mode II loading increase with time and/or temperature. Timoshenko Beam Adhesive Joint Interfacial Shear Stress Cohesive Zone Model Peel Test Su, Y.-Y. aut Enthalten in Acta mechanica Springer Vienna, 1965 226(2015), 9 vom: 03. Mai, Seite 3059-3067 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:226 year:2015 number:9 day:03 month:05 pages:3059-3067 https://doi.org/10.1007/s00707-015-1357-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 AR 226 2015 9 03 05 3059-3067 |
allfieldsSound |
10.1007/s00707-015-1357-8 doi (DE-627)OLC2030143928 (DE-He213)s00707-015-1357-8-p DE-627 ger DE-627 rakwb eng 530 VZ Gao, X.-L. verfasserin aut An analytical study on peeling of an adhesively bonded joint based on a viscoelastic Bernoulli–Euler beam model 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract Peeling of a thin film adhesively bonded to a rigid substrate is analytically studied using a Bernoulli–Euler beam theory for viscoelastic materials. The film (adherend) is modeled as a viscoelastic Bernoulli–Euler beam, and the normal and shear stresses on the film-adhesive interface are assumed to satisfy constant traction laws. Closed-form solutions are derived for the following two cases: (i) only the interfacial normal stress is present (mode I loading) and (ii) the interfacial shear stress is acting alone (mode II loading). The Boltzmann superposition integral is used to obtain the constitutive relations for the viscoelastic beam, and the methods of separation of variables and Laplace transforms are employed in the formulation. To illustrate the newly derived analytical solutions, sample cases are quantitatively studied. The three-parameter Kohlrausch–Williams–Watts model is adopted to compute the compliance. The numerical results show that both the vertical displacement under mode I loading and the horizontal displacement under mode II loading increase with time and/or temperature. Timoshenko Beam Adhesive Joint Interfacial Shear Stress Cohesive Zone Model Peel Test Su, Y.-Y. aut Enthalten in Acta mechanica Springer Vienna, 1965 226(2015), 9 vom: 03. Mai, Seite 3059-3067 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:226 year:2015 number:9 day:03 month:05 pages:3059-3067 https://doi.org/10.1007/s00707-015-1357-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 AR 226 2015 9 03 05 3059-3067 |
language |
English |
source |
Enthalten in Acta mechanica 226(2015), 9 vom: 03. Mai, Seite 3059-3067 volume:226 year:2015 number:9 day:03 month:05 pages:3059-3067 |
sourceStr |
Enthalten in Acta mechanica 226(2015), 9 vom: 03. Mai, Seite 3059-3067 volume:226 year:2015 number:9 day:03 month:05 pages:3059-3067 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Timoshenko Beam Adhesive Joint Interfacial Shear Stress Cohesive Zone Model Peel Test |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Acta mechanica |
authorswithroles_txt_mv |
Gao, X.-L. @@aut@@ Su, Y.-Y. @@aut@@ |
publishDateDaySort_date |
2015-05-03T00:00:00Z |
hierarchy_top_id |
129511676 |
dewey-sort |
3530 |
id |
OLC2030143928 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030143928</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502143321.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00707-015-1357-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030143928</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00707-015-1357-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gao, X.-L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An analytical study on peeling of an adhesively bonded joint based on a viscoelastic Bernoulli–Euler beam model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Wien 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Peeling of a thin film adhesively bonded to a rigid substrate is analytically studied using a Bernoulli–Euler beam theory for viscoelastic materials. The film (adherend) is modeled as a viscoelastic Bernoulli–Euler beam, and the normal and shear stresses on the film-adhesive interface are assumed to satisfy constant traction laws. Closed-form solutions are derived for the following two cases: (i) only the interfacial normal stress is present (mode I loading) and (ii) the interfacial shear stress is acting alone (mode II loading). The Boltzmann superposition integral is used to obtain the constitutive relations for the viscoelastic beam, and the methods of separation of variables and Laplace transforms are employed in the formulation. To illustrate the newly derived analytical solutions, sample cases are quantitatively studied. The three-parameter Kohlrausch–Williams–Watts model is adopted to compute the compliance. The numerical results show that both the vertical displacement under mode I loading and the horizontal displacement under mode II loading increase with time and/or temperature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Timoshenko Beam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adhesive Joint</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interfacial Shear Stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cohesive Zone Model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peel Test</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Y.-Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer Vienna, 1965</subfield><subfield code="g">226(2015), 9 vom: 03. Mai, Seite 3059-3067</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:226</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:9</subfield><subfield code="g">day:03</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:3059-3067</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00707-015-1357-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">226</subfield><subfield code="j">2015</subfield><subfield code="e">9</subfield><subfield code="b">03</subfield><subfield code="c">05</subfield><subfield code="h">3059-3067</subfield></datafield></record></collection>
|
author |
Gao, X.-L. |
spellingShingle |
Gao, X.-L. ddc 530 misc Timoshenko Beam misc Adhesive Joint misc Interfacial Shear Stress misc Cohesive Zone Model misc Peel Test An analytical study on peeling of an adhesively bonded joint based on a viscoelastic Bernoulli–Euler beam model |
authorStr |
Gao, X.-L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129511676 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-5970 |
topic_title |
530 VZ An analytical study on peeling of an adhesively bonded joint based on a viscoelastic Bernoulli–Euler beam model Timoshenko Beam Adhesive Joint Interfacial Shear Stress Cohesive Zone Model Peel Test |
topic |
ddc 530 misc Timoshenko Beam misc Adhesive Joint misc Interfacial Shear Stress misc Cohesive Zone Model misc Peel Test |
topic_unstemmed |
ddc 530 misc Timoshenko Beam misc Adhesive Joint misc Interfacial Shear Stress misc Cohesive Zone Model misc Peel Test |
topic_browse |
ddc 530 misc Timoshenko Beam misc Adhesive Joint misc Interfacial Shear Stress misc Cohesive Zone Model misc Peel Test |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta mechanica |
hierarchy_parent_id |
129511676 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Acta mechanica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129511676 (DE-600)210328-X (DE-576)014919141 |
title |
An analytical study on peeling of an adhesively bonded joint based on a viscoelastic Bernoulli–Euler beam model |
ctrlnum |
(DE-627)OLC2030143928 (DE-He213)s00707-015-1357-8-p |
title_full |
An analytical study on peeling of an adhesively bonded joint based on a viscoelastic Bernoulli–Euler beam model |
author_sort |
Gao, X.-L. |
journal |
Acta mechanica |
journalStr |
Acta mechanica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
3059 |
author_browse |
Gao, X.-L. Su, Y.-Y. |
container_volume |
226 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Gao, X.-L. |
doi_str_mv |
10.1007/s00707-015-1357-8 |
dewey-full |
530 |
title_sort |
an analytical study on peeling of an adhesively bonded joint based on a viscoelastic bernoulli–euler beam model |
title_auth |
An analytical study on peeling of an adhesively bonded joint based on a viscoelastic Bernoulli–Euler beam model |
abstract |
Abstract Peeling of a thin film adhesively bonded to a rigid substrate is analytically studied using a Bernoulli–Euler beam theory for viscoelastic materials. The film (adherend) is modeled as a viscoelastic Bernoulli–Euler beam, and the normal and shear stresses on the film-adhesive interface are assumed to satisfy constant traction laws. Closed-form solutions are derived for the following two cases: (i) only the interfacial normal stress is present (mode I loading) and (ii) the interfacial shear stress is acting alone (mode II loading). The Boltzmann superposition integral is used to obtain the constitutive relations for the viscoelastic beam, and the methods of separation of variables and Laplace transforms are employed in the formulation. To illustrate the newly derived analytical solutions, sample cases are quantitatively studied. The three-parameter Kohlrausch–Williams–Watts model is adopted to compute the compliance. The numerical results show that both the vertical displacement under mode I loading and the horizontal displacement under mode II loading increase with time and/or temperature. © Springer-Verlag Wien 2015 |
abstractGer |
Abstract Peeling of a thin film adhesively bonded to a rigid substrate is analytically studied using a Bernoulli–Euler beam theory for viscoelastic materials. The film (adherend) is modeled as a viscoelastic Bernoulli–Euler beam, and the normal and shear stresses on the film-adhesive interface are assumed to satisfy constant traction laws. Closed-form solutions are derived for the following two cases: (i) only the interfacial normal stress is present (mode I loading) and (ii) the interfacial shear stress is acting alone (mode II loading). The Boltzmann superposition integral is used to obtain the constitutive relations for the viscoelastic beam, and the methods of separation of variables and Laplace transforms are employed in the formulation. To illustrate the newly derived analytical solutions, sample cases are quantitatively studied. The three-parameter Kohlrausch–Williams–Watts model is adopted to compute the compliance. The numerical results show that both the vertical displacement under mode I loading and the horizontal displacement under mode II loading increase with time and/or temperature. © Springer-Verlag Wien 2015 |
abstract_unstemmed |
Abstract Peeling of a thin film adhesively bonded to a rigid substrate is analytically studied using a Bernoulli–Euler beam theory for viscoelastic materials. The film (adherend) is modeled as a viscoelastic Bernoulli–Euler beam, and the normal and shear stresses on the film-adhesive interface are assumed to satisfy constant traction laws. Closed-form solutions are derived for the following two cases: (i) only the interfacial normal stress is present (mode I loading) and (ii) the interfacial shear stress is acting alone (mode II loading). The Boltzmann superposition integral is used to obtain the constitutive relations for the viscoelastic beam, and the methods of separation of variables and Laplace transforms are employed in the formulation. To illustrate the newly derived analytical solutions, sample cases are quantitatively studied. The three-parameter Kohlrausch–Williams–Watts model is adopted to compute the compliance. The numerical results show that both the vertical displacement under mode I loading and the horizontal displacement under mode II loading increase with time and/or temperature. © Springer-Verlag Wien 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 |
container_issue |
9 |
title_short |
An analytical study on peeling of an adhesively bonded joint based on a viscoelastic Bernoulli–Euler beam model |
url |
https://doi.org/10.1007/s00707-015-1357-8 |
remote_bool |
false |
author2 |
Su, Y.-Y. |
author2Str |
Su, Y.-Y. |
ppnlink |
129511676 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00707-015-1357-8 |
up_date |
2024-07-04T01:23:33.167Z |
_version_ |
1803609663777800192 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030143928</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502143321.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00707-015-1357-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030143928</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00707-015-1357-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gao, X.-L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An analytical study on peeling of an adhesively bonded joint based on a viscoelastic Bernoulli–Euler beam model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Wien 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Peeling of a thin film adhesively bonded to a rigid substrate is analytically studied using a Bernoulli–Euler beam theory for viscoelastic materials. The film (adherend) is modeled as a viscoelastic Bernoulli–Euler beam, and the normal and shear stresses on the film-adhesive interface are assumed to satisfy constant traction laws. Closed-form solutions are derived for the following two cases: (i) only the interfacial normal stress is present (mode I loading) and (ii) the interfacial shear stress is acting alone (mode II loading). The Boltzmann superposition integral is used to obtain the constitutive relations for the viscoelastic beam, and the methods of separation of variables and Laplace transforms are employed in the formulation. To illustrate the newly derived analytical solutions, sample cases are quantitatively studied. The three-parameter Kohlrausch–Williams–Watts model is adopted to compute the compliance. The numerical results show that both the vertical displacement under mode I loading and the horizontal displacement under mode II loading increase with time and/or temperature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Timoshenko Beam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adhesive Joint</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interfacial Shear Stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cohesive Zone Model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peel Test</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Y.-Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer Vienna, 1965</subfield><subfield code="g">226(2015), 9 vom: 03. Mai, Seite 3059-3067</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:226</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:9</subfield><subfield code="g">day:03</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:3059-3067</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00707-015-1357-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">226</subfield><subfield code="j">2015</subfield><subfield code="e">9</subfield><subfield code="b">03</subfield><subfield code="c">05</subfield><subfield code="h">3059-3067</subfield></datafield></record></collection>
|
score |
7.4001293 |