Optimization of bone scaffold structures using experimental and numerical data
Abstract Optimization of bone scaffold structures is performed on the basis of homogenized orthotropic elastic properties of trabecular bone tissue and three-scale numerical model. The orthotropic effective material properties are calculated using a finite element method numerical model of bone micr...
Ausführliche Beschreibung
Autor*in: |
Makowski, Przemysław [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Wien 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta mechanica - Springer Vienna, 1965, 227(2015), 1 vom: 18. Juli, Seite 139-149 |
---|---|
Übergeordnetes Werk: |
volume:227 ; year:2015 ; number:1 ; day:18 ; month:07 ; pages:139-149 |
Links: |
---|
DOI / URN: |
10.1007/s00707-015-1421-4 |
---|
Katalog-ID: |
OLC2030144746 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2030144746 | ||
003 | DE-627 | ||
005 | 20230502143322.0 | ||
007 | tu | ||
008 | 200820s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00707-015-1421-4 |2 doi | |
035 | |a (DE-627)OLC2030144746 | ||
035 | |a (DE-He213)s00707-015-1421-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Makowski, Przemysław |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimization of bone scaffold structures using experimental and numerical data |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Wien 2015 | ||
520 | |a Abstract Optimization of bone scaffold structures is performed on the basis of homogenized orthotropic elastic properties of trabecular bone tissue and three-scale numerical model. The orthotropic effective material properties are calculated using a finite element method numerical model of bone microstructure with numerical homogenization algorithm and serve as a template of surgically removed bone tissue. The evolutionary algorithm is used to optimize patient-specific, periodic structure of the bone scaffold, possessing parameters similar to the removed bone and so allowing the bone tissue to heal and rebuild faster. The proposed methodology can be used to design bone scaffolds manufactured from biodegradable biopolymers using fused deposition modeling methods. | ||
650 | 4 | |a Trabecular Bone | |
650 | 4 | |a Representative Volume Element | |
650 | 4 | |a Bone Microstructure | |
650 | 4 | |a Scaffold Structure | |
650 | 4 | |a Bone Scaffold | |
700 | 1 | |a Kuś, Wacław |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Acta mechanica |d Springer Vienna, 1965 |g 227(2015), 1 vom: 18. Juli, Seite 139-149 |w (DE-627)129511676 |w (DE-600)210328-X |w (DE-576)014919141 |x 0001-5970 |7 nnns |
773 | 1 | 8 | |g volume:227 |g year:2015 |g number:1 |g day:18 |g month:07 |g pages:139-149 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00707-015-1421-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 227 |j 2015 |e 1 |b 18 |c 07 |h 139-149 |
author_variant |
p m pm w k wk |
---|---|
matchkey_str |
article:00015970:2015----::piiainfoecfodtutrssneprmn |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s00707-015-1421-4 doi (DE-627)OLC2030144746 (DE-He213)s00707-015-1421-4-p DE-627 ger DE-627 rakwb eng 530 VZ Makowski, Przemysław verfasserin aut Optimization of bone scaffold structures using experimental and numerical data 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract Optimization of bone scaffold structures is performed on the basis of homogenized orthotropic elastic properties of trabecular bone tissue and three-scale numerical model. The orthotropic effective material properties are calculated using a finite element method numerical model of bone microstructure with numerical homogenization algorithm and serve as a template of surgically removed bone tissue. The evolutionary algorithm is used to optimize patient-specific, periodic structure of the bone scaffold, possessing parameters similar to the removed bone and so allowing the bone tissue to heal and rebuild faster. The proposed methodology can be used to design bone scaffolds manufactured from biodegradable biopolymers using fused deposition modeling methods. Trabecular Bone Representative Volume Element Bone Microstructure Scaffold Structure Bone Scaffold Kuś, Wacław aut Enthalten in Acta mechanica Springer Vienna, 1965 227(2015), 1 vom: 18. Juli, Seite 139-149 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:227 year:2015 number:1 day:18 month:07 pages:139-149 https://doi.org/10.1007/s00707-015-1421-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 AR 227 2015 1 18 07 139-149 |
spelling |
10.1007/s00707-015-1421-4 doi (DE-627)OLC2030144746 (DE-He213)s00707-015-1421-4-p DE-627 ger DE-627 rakwb eng 530 VZ Makowski, Przemysław verfasserin aut Optimization of bone scaffold structures using experimental and numerical data 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract Optimization of bone scaffold structures is performed on the basis of homogenized orthotropic elastic properties of trabecular bone tissue and three-scale numerical model. The orthotropic effective material properties are calculated using a finite element method numerical model of bone microstructure with numerical homogenization algorithm and serve as a template of surgically removed bone tissue. The evolutionary algorithm is used to optimize patient-specific, periodic structure of the bone scaffold, possessing parameters similar to the removed bone and so allowing the bone tissue to heal and rebuild faster. The proposed methodology can be used to design bone scaffolds manufactured from biodegradable biopolymers using fused deposition modeling methods. Trabecular Bone Representative Volume Element Bone Microstructure Scaffold Structure Bone Scaffold Kuś, Wacław aut Enthalten in Acta mechanica Springer Vienna, 1965 227(2015), 1 vom: 18. Juli, Seite 139-149 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:227 year:2015 number:1 day:18 month:07 pages:139-149 https://doi.org/10.1007/s00707-015-1421-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 AR 227 2015 1 18 07 139-149 |
allfields_unstemmed |
10.1007/s00707-015-1421-4 doi (DE-627)OLC2030144746 (DE-He213)s00707-015-1421-4-p DE-627 ger DE-627 rakwb eng 530 VZ Makowski, Przemysław verfasserin aut Optimization of bone scaffold structures using experimental and numerical data 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract Optimization of bone scaffold structures is performed on the basis of homogenized orthotropic elastic properties of trabecular bone tissue and three-scale numerical model. The orthotropic effective material properties are calculated using a finite element method numerical model of bone microstructure with numerical homogenization algorithm and serve as a template of surgically removed bone tissue. The evolutionary algorithm is used to optimize patient-specific, periodic structure of the bone scaffold, possessing parameters similar to the removed bone and so allowing the bone tissue to heal and rebuild faster. The proposed methodology can be used to design bone scaffolds manufactured from biodegradable biopolymers using fused deposition modeling methods. Trabecular Bone Representative Volume Element Bone Microstructure Scaffold Structure Bone Scaffold Kuś, Wacław aut Enthalten in Acta mechanica Springer Vienna, 1965 227(2015), 1 vom: 18. Juli, Seite 139-149 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:227 year:2015 number:1 day:18 month:07 pages:139-149 https://doi.org/10.1007/s00707-015-1421-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 AR 227 2015 1 18 07 139-149 |
allfieldsGer |
10.1007/s00707-015-1421-4 doi (DE-627)OLC2030144746 (DE-He213)s00707-015-1421-4-p DE-627 ger DE-627 rakwb eng 530 VZ Makowski, Przemysław verfasserin aut Optimization of bone scaffold structures using experimental and numerical data 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract Optimization of bone scaffold structures is performed on the basis of homogenized orthotropic elastic properties of trabecular bone tissue and three-scale numerical model. The orthotropic effective material properties are calculated using a finite element method numerical model of bone microstructure with numerical homogenization algorithm and serve as a template of surgically removed bone tissue. The evolutionary algorithm is used to optimize patient-specific, periodic structure of the bone scaffold, possessing parameters similar to the removed bone and so allowing the bone tissue to heal and rebuild faster. The proposed methodology can be used to design bone scaffolds manufactured from biodegradable biopolymers using fused deposition modeling methods. Trabecular Bone Representative Volume Element Bone Microstructure Scaffold Structure Bone Scaffold Kuś, Wacław aut Enthalten in Acta mechanica Springer Vienna, 1965 227(2015), 1 vom: 18. Juli, Seite 139-149 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:227 year:2015 number:1 day:18 month:07 pages:139-149 https://doi.org/10.1007/s00707-015-1421-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 AR 227 2015 1 18 07 139-149 |
allfieldsSound |
10.1007/s00707-015-1421-4 doi (DE-627)OLC2030144746 (DE-He213)s00707-015-1421-4-p DE-627 ger DE-627 rakwb eng 530 VZ Makowski, Przemysław verfasserin aut Optimization of bone scaffold structures using experimental and numerical data 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Wien 2015 Abstract Optimization of bone scaffold structures is performed on the basis of homogenized orthotropic elastic properties of trabecular bone tissue and three-scale numerical model. The orthotropic effective material properties are calculated using a finite element method numerical model of bone microstructure with numerical homogenization algorithm and serve as a template of surgically removed bone tissue. The evolutionary algorithm is used to optimize patient-specific, periodic structure of the bone scaffold, possessing parameters similar to the removed bone and so allowing the bone tissue to heal and rebuild faster. The proposed methodology can be used to design bone scaffolds manufactured from biodegradable biopolymers using fused deposition modeling methods. Trabecular Bone Representative Volume Element Bone Microstructure Scaffold Structure Bone Scaffold Kuś, Wacław aut Enthalten in Acta mechanica Springer Vienna, 1965 227(2015), 1 vom: 18. Juli, Seite 139-149 (DE-627)129511676 (DE-600)210328-X (DE-576)014919141 0001-5970 nnns volume:227 year:2015 number:1 day:18 month:07 pages:139-149 https://doi.org/10.1007/s00707-015-1421-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 AR 227 2015 1 18 07 139-149 |
language |
English |
source |
Enthalten in Acta mechanica 227(2015), 1 vom: 18. Juli, Seite 139-149 volume:227 year:2015 number:1 day:18 month:07 pages:139-149 |
sourceStr |
Enthalten in Acta mechanica 227(2015), 1 vom: 18. Juli, Seite 139-149 volume:227 year:2015 number:1 day:18 month:07 pages:139-149 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Trabecular Bone Representative Volume Element Bone Microstructure Scaffold Structure Bone Scaffold |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Acta mechanica |
authorswithroles_txt_mv |
Makowski, Przemysław @@aut@@ Kuś, Wacław @@aut@@ |
publishDateDaySort_date |
2015-07-18T00:00:00Z |
hierarchy_top_id |
129511676 |
dewey-sort |
3530 |
id |
OLC2030144746 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030144746</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502143322.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00707-015-1421-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030144746</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00707-015-1421-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Makowski, Przemysław</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization of bone scaffold structures using experimental and numerical data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Wien 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Optimization of bone scaffold structures is performed on the basis of homogenized orthotropic elastic properties of trabecular bone tissue and three-scale numerical model. The orthotropic effective material properties are calculated using a finite element method numerical model of bone microstructure with numerical homogenization algorithm and serve as a template of surgically removed bone tissue. The evolutionary algorithm is used to optimize patient-specific, periodic structure of the bone scaffold, possessing parameters similar to the removed bone and so allowing the bone tissue to heal and rebuild faster. The proposed methodology can be used to design bone scaffolds manufactured from biodegradable biopolymers using fused deposition modeling methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trabecular Bone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representative Volume Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bone Microstructure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scaffold Structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bone Scaffold</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuś, Wacław</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer Vienna, 1965</subfield><subfield code="g">227(2015), 1 vom: 18. Juli, Seite 139-149</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:227</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:139-149</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00707-015-1421-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">227</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">07</subfield><subfield code="h">139-149</subfield></datafield></record></collection>
|
author |
Makowski, Przemysław |
spellingShingle |
Makowski, Przemysław ddc 530 misc Trabecular Bone misc Representative Volume Element misc Bone Microstructure misc Scaffold Structure misc Bone Scaffold Optimization of bone scaffold structures using experimental and numerical data |
authorStr |
Makowski, Przemysław |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129511676 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-5970 |
topic_title |
530 VZ Optimization of bone scaffold structures using experimental and numerical data Trabecular Bone Representative Volume Element Bone Microstructure Scaffold Structure Bone Scaffold |
topic |
ddc 530 misc Trabecular Bone misc Representative Volume Element misc Bone Microstructure misc Scaffold Structure misc Bone Scaffold |
topic_unstemmed |
ddc 530 misc Trabecular Bone misc Representative Volume Element misc Bone Microstructure misc Scaffold Structure misc Bone Scaffold |
topic_browse |
ddc 530 misc Trabecular Bone misc Representative Volume Element misc Bone Microstructure misc Scaffold Structure misc Bone Scaffold |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta mechanica |
hierarchy_parent_id |
129511676 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Acta mechanica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129511676 (DE-600)210328-X (DE-576)014919141 |
title |
Optimization of bone scaffold structures using experimental and numerical data |
ctrlnum |
(DE-627)OLC2030144746 (DE-He213)s00707-015-1421-4-p |
title_full |
Optimization of bone scaffold structures using experimental and numerical data |
author_sort |
Makowski, Przemysław |
journal |
Acta mechanica |
journalStr |
Acta mechanica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
139 |
author_browse |
Makowski, Przemysław Kuś, Wacław |
container_volume |
227 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Makowski, Przemysław |
doi_str_mv |
10.1007/s00707-015-1421-4 |
dewey-full |
530 |
title_sort |
optimization of bone scaffold structures using experimental and numerical data |
title_auth |
Optimization of bone scaffold structures using experimental and numerical data |
abstract |
Abstract Optimization of bone scaffold structures is performed on the basis of homogenized orthotropic elastic properties of trabecular bone tissue and three-scale numerical model. The orthotropic effective material properties are calculated using a finite element method numerical model of bone microstructure with numerical homogenization algorithm and serve as a template of surgically removed bone tissue. The evolutionary algorithm is used to optimize patient-specific, periodic structure of the bone scaffold, possessing parameters similar to the removed bone and so allowing the bone tissue to heal and rebuild faster. The proposed methodology can be used to design bone scaffolds manufactured from biodegradable biopolymers using fused deposition modeling methods. © Springer-Verlag Wien 2015 |
abstractGer |
Abstract Optimization of bone scaffold structures is performed on the basis of homogenized orthotropic elastic properties of trabecular bone tissue and three-scale numerical model. The orthotropic effective material properties are calculated using a finite element method numerical model of bone microstructure with numerical homogenization algorithm and serve as a template of surgically removed bone tissue. The evolutionary algorithm is used to optimize patient-specific, periodic structure of the bone scaffold, possessing parameters similar to the removed bone and so allowing the bone tissue to heal and rebuild faster. The proposed methodology can be used to design bone scaffolds manufactured from biodegradable biopolymers using fused deposition modeling methods. © Springer-Verlag Wien 2015 |
abstract_unstemmed |
Abstract Optimization of bone scaffold structures is performed on the basis of homogenized orthotropic elastic properties of trabecular bone tissue and three-scale numerical model. The orthotropic effective material properties are calculated using a finite element method numerical model of bone microstructure with numerical homogenization algorithm and serve as a template of surgically removed bone tissue. The evolutionary algorithm is used to optimize patient-specific, periodic structure of the bone scaffold, possessing parameters similar to the removed bone and so allowing the bone tissue to heal and rebuild faster. The proposed methodology can be used to design bone scaffolds manufactured from biodegradable biopolymers using fused deposition modeling methods. © Springer-Verlag Wien 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_59 GBV_ILN_70 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Optimization of bone scaffold structures using experimental and numerical data |
url |
https://doi.org/10.1007/s00707-015-1421-4 |
remote_bool |
false |
author2 |
Kuś, Wacław |
author2Str |
Kuś, Wacław |
ppnlink |
129511676 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00707-015-1421-4 |
up_date |
2024-07-04T01:23:42.140Z |
_version_ |
1803609673187721216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030144746</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502143322.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00707-015-1421-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030144746</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00707-015-1421-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Makowski, Przemysław</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization of bone scaffold structures using experimental and numerical data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Wien 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Optimization of bone scaffold structures is performed on the basis of homogenized orthotropic elastic properties of trabecular bone tissue and three-scale numerical model. The orthotropic effective material properties are calculated using a finite element method numerical model of bone microstructure with numerical homogenization algorithm and serve as a template of surgically removed bone tissue. The evolutionary algorithm is used to optimize patient-specific, periodic structure of the bone scaffold, possessing parameters similar to the removed bone and so allowing the bone tissue to heal and rebuild faster. The proposed methodology can be used to design bone scaffolds manufactured from biodegradable biopolymers using fused deposition modeling methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trabecular Bone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representative Volume Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bone Microstructure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scaffold Structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bone Scaffold</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuś, Wacław</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mechanica</subfield><subfield code="d">Springer Vienna, 1965</subfield><subfield code="g">227(2015), 1 vom: 18. Juli, Seite 139-149</subfield><subfield code="w">(DE-627)129511676</subfield><subfield code="w">(DE-600)210328-X</subfield><subfield code="w">(DE-576)014919141</subfield><subfield code="x">0001-5970</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:227</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:139-149</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00707-015-1421-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">227</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">07</subfield><subfield code="h">139-149</subfield></datafield></record></collection>
|
score |
7.4000597 |