A 2-extension of the field ℚ of rational numbersof rational numbers
Abstract It is proved that the rational number field ℚhas one, and only one, normal 2-extension ℚ(2, t8)/ℚwith group isomorphic to$$\mathbb{Z}_{2\begin{array}{*{20}c} * \\ 2 \\ \end{array} } {\mathbb{Z} \mathord{\left/ {\vphantom {\mathbb{Z} 2}} \right. \kern-\nulldelimiterspace} 2}$$.If Ωis the max...
Ausführliche Beschreibung
Autor*in: |
Tsvetkov, V. M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1999 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Kluwer Academic/Plenum Publishers 1999 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of mathematical sciences - Kluwer Academic Publishers-Plenum Publishers, 1994, 95(1999), 2 vom: Juni, Seite 2161-2163 |
---|---|
Übergeordnetes Werk: |
volume:95 ; year:1999 ; number:2 ; month:06 ; pages:2161-2163 |
Links: |
---|
DOI / URN: |
10.1007/BF02169978 |
---|
Katalog-ID: |
OLC2030754803 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2030754803 | ||
003 | DE-627 | ||
005 | 20230503155956.0 | ||
007 | tu | ||
008 | 200819s1999 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02169978 |2 doi | |
035 | |a (DE-627)OLC2030754803 | ||
035 | |a (DE-He213)BF02169978-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Tsvetkov, V. M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A 2-extension of the field ℚ of rational numbersof rational numbers |
264 | 1 | |c 1999 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Kluwer Academic/Plenum Publishers 1999 | ||
520 | |a Abstract It is proved that the rational number field ℚhas one, and only one, normal 2-extension ℚ(2, t8)/ℚwith group isomorphic to$$\mathbb{Z}_{2\begin{array}{*{20}c} * \\ 2 \\ \end{array} } {\mathbb{Z} \mathord{\left/ {\vphantom {\mathbb{Z} 2}} \right. \kern-\nulldelimiterspace} 2}$$.If Ωis the maximal subfield of a real-closed field, which does not contain$$\sqrt 2 $$,then the algebraic closure$$\bar \Omega $$of Ωis isomorphic to the field$$\Omega \begin{array}{*{20}c} \otimes \\ \mathbb{Q} \\ \end{array} \mathbb{Q}_{(2,\infty )} $$.Bibliography: 7titles. | ||
650 | 4 | |a Rational Number | |
650 | 4 | |a Number Field | |
650 | 4 | |a Algebraic Closure | |
650 | 4 | |a Maximal Subfield | |
650 | 4 | |a Rational Number Field | |
773 | 0 | 8 | |i Enthalten in |t Journal of mathematical sciences |d Kluwer Academic Publishers-Plenum Publishers, 1994 |g 95(1999), 2 vom: Juni, Seite 2161-2163 |w (DE-627)18219762X |w (DE-600)1185490-X |w (DE-576)038888130 |x 1072-3374 |7 nnns |
773 | 1 | 8 | |g volume:95 |g year:1999 |g number:2 |g month:06 |g pages:2161-2163 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02169978 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4310 | ||
936 | b | k | |a 31.00 |q VZ |
951 | |a AR | ||
952 | |d 95 |j 1999 |e 2 |c 06 |h 2161-2163 |
author_variant |
v m t vm vmt |
---|---|
matchkey_str |
article:10723374:1999----::2xesooteilortoanmes |
hierarchy_sort_str |
1999 |
bklnumber |
31.00 |
publishDate |
1999 |
allfields |
10.1007/BF02169978 doi (DE-627)OLC2030754803 (DE-He213)BF02169978-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Tsvetkov, V. M. verfasserin aut A 2-extension of the field ℚ of rational numbersof rational numbers 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic/Plenum Publishers 1999 Abstract It is proved that the rational number field ℚhas one, and only one, normal 2-extension ℚ(2, t8)/ℚwith group isomorphic to$$\mathbb{Z}_{2\begin{array}{*{20}c} * \\ 2 \\ \end{array} } {\mathbb{Z} \mathord{\left/ {\vphantom {\mathbb{Z} 2}} \right. \kern-\nulldelimiterspace} 2}$$.If Ωis the maximal subfield of a real-closed field, which does not contain$$\sqrt 2 $$,then the algebraic closure$$\bar \Omega $$of Ωis isomorphic to the field$$\Omega \begin{array}{*{20}c} \otimes \\ \mathbb{Q} \\ \end{array} \mathbb{Q}_{(2,\infty )} $$.Bibliography: 7titles. Rational Number Number Field Algebraic Closure Maximal Subfield Rational Number Field Enthalten in Journal of mathematical sciences Kluwer Academic Publishers-Plenum Publishers, 1994 95(1999), 2 vom: Juni, Seite 2161-2163 (DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 1072-3374 nnns volume:95 year:1999 number:2 month:06 pages:2161-2163 https://doi.org/10.1007/BF02169978 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4310 31.00 VZ AR 95 1999 2 06 2161-2163 |
spelling |
10.1007/BF02169978 doi (DE-627)OLC2030754803 (DE-He213)BF02169978-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Tsvetkov, V. M. verfasserin aut A 2-extension of the field ℚ of rational numbersof rational numbers 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic/Plenum Publishers 1999 Abstract It is proved that the rational number field ℚhas one, and only one, normal 2-extension ℚ(2, t8)/ℚwith group isomorphic to$$\mathbb{Z}_{2\begin{array}{*{20}c} * \\ 2 \\ \end{array} } {\mathbb{Z} \mathord{\left/ {\vphantom {\mathbb{Z} 2}} \right. \kern-\nulldelimiterspace} 2}$$.If Ωis the maximal subfield of a real-closed field, which does not contain$$\sqrt 2 $$,then the algebraic closure$$\bar \Omega $$of Ωis isomorphic to the field$$\Omega \begin{array}{*{20}c} \otimes \\ \mathbb{Q} \\ \end{array} \mathbb{Q}_{(2,\infty )} $$.Bibliography: 7titles. Rational Number Number Field Algebraic Closure Maximal Subfield Rational Number Field Enthalten in Journal of mathematical sciences Kluwer Academic Publishers-Plenum Publishers, 1994 95(1999), 2 vom: Juni, Seite 2161-2163 (DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 1072-3374 nnns volume:95 year:1999 number:2 month:06 pages:2161-2163 https://doi.org/10.1007/BF02169978 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4310 31.00 VZ AR 95 1999 2 06 2161-2163 |
allfields_unstemmed |
10.1007/BF02169978 doi (DE-627)OLC2030754803 (DE-He213)BF02169978-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Tsvetkov, V. M. verfasserin aut A 2-extension of the field ℚ of rational numbersof rational numbers 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic/Plenum Publishers 1999 Abstract It is proved that the rational number field ℚhas one, and only one, normal 2-extension ℚ(2, t8)/ℚwith group isomorphic to$$\mathbb{Z}_{2\begin{array}{*{20}c} * \\ 2 \\ \end{array} } {\mathbb{Z} \mathord{\left/ {\vphantom {\mathbb{Z} 2}} \right. \kern-\nulldelimiterspace} 2}$$.If Ωis the maximal subfield of a real-closed field, which does not contain$$\sqrt 2 $$,then the algebraic closure$$\bar \Omega $$of Ωis isomorphic to the field$$\Omega \begin{array}{*{20}c} \otimes \\ \mathbb{Q} \\ \end{array} \mathbb{Q}_{(2,\infty )} $$.Bibliography: 7titles. Rational Number Number Field Algebraic Closure Maximal Subfield Rational Number Field Enthalten in Journal of mathematical sciences Kluwer Academic Publishers-Plenum Publishers, 1994 95(1999), 2 vom: Juni, Seite 2161-2163 (DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 1072-3374 nnns volume:95 year:1999 number:2 month:06 pages:2161-2163 https://doi.org/10.1007/BF02169978 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4310 31.00 VZ AR 95 1999 2 06 2161-2163 |
allfieldsGer |
10.1007/BF02169978 doi (DE-627)OLC2030754803 (DE-He213)BF02169978-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Tsvetkov, V. M. verfasserin aut A 2-extension of the field ℚ of rational numbersof rational numbers 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic/Plenum Publishers 1999 Abstract It is proved that the rational number field ℚhas one, and only one, normal 2-extension ℚ(2, t8)/ℚwith group isomorphic to$$\mathbb{Z}_{2\begin{array}{*{20}c} * \\ 2 \\ \end{array} } {\mathbb{Z} \mathord{\left/ {\vphantom {\mathbb{Z} 2}} \right. \kern-\nulldelimiterspace} 2}$$.If Ωis the maximal subfield of a real-closed field, which does not contain$$\sqrt 2 $$,then the algebraic closure$$\bar \Omega $$of Ωis isomorphic to the field$$\Omega \begin{array}{*{20}c} \otimes \\ \mathbb{Q} \\ \end{array} \mathbb{Q}_{(2,\infty )} $$.Bibliography: 7titles. Rational Number Number Field Algebraic Closure Maximal Subfield Rational Number Field Enthalten in Journal of mathematical sciences Kluwer Academic Publishers-Plenum Publishers, 1994 95(1999), 2 vom: Juni, Seite 2161-2163 (DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 1072-3374 nnns volume:95 year:1999 number:2 month:06 pages:2161-2163 https://doi.org/10.1007/BF02169978 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4310 31.00 VZ AR 95 1999 2 06 2161-2163 |
allfieldsSound |
10.1007/BF02169978 doi (DE-627)OLC2030754803 (DE-He213)BF02169978-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Tsvetkov, V. M. verfasserin aut A 2-extension of the field ℚ of rational numbersof rational numbers 1999 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic/Plenum Publishers 1999 Abstract It is proved that the rational number field ℚhas one, and only one, normal 2-extension ℚ(2, t8)/ℚwith group isomorphic to$$\mathbb{Z}_{2\begin{array}{*{20}c} * \\ 2 \\ \end{array} } {\mathbb{Z} \mathord{\left/ {\vphantom {\mathbb{Z} 2}} \right. \kern-\nulldelimiterspace} 2}$$.If Ωis the maximal subfield of a real-closed field, which does not contain$$\sqrt 2 $$,then the algebraic closure$$\bar \Omega $$of Ωis isomorphic to the field$$\Omega \begin{array}{*{20}c} \otimes \\ \mathbb{Q} \\ \end{array} \mathbb{Q}_{(2,\infty )} $$.Bibliography: 7titles. Rational Number Number Field Algebraic Closure Maximal Subfield Rational Number Field Enthalten in Journal of mathematical sciences Kluwer Academic Publishers-Plenum Publishers, 1994 95(1999), 2 vom: Juni, Seite 2161-2163 (DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 1072-3374 nnns volume:95 year:1999 number:2 month:06 pages:2161-2163 https://doi.org/10.1007/BF02169978 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4310 31.00 VZ AR 95 1999 2 06 2161-2163 |
language |
English |
source |
Enthalten in Journal of mathematical sciences 95(1999), 2 vom: Juni, Seite 2161-2163 volume:95 year:1999 number:2 month:06 pages:2161-2163 |
sourceStr |
Enthalten in Journal of mathematical sciences 95(1999), 2 vom: Juni, Seite 2161-2163 volume:95 year:1999 number:2 month:06 pages:2161-2163 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Rational Number Number Field Algebraic Closure Maximal Subfield Rational Number Field |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of mathematical sciences |
authorswithroles_txt_mv |
Tsvetkov, V. M. @@aut@@ |
publishDateDaySort_date |
1999-06-01T00:00:00Z |
hierarchy_top_id |
18219762X |
dewey-sort |
3510 |
id |
OLC2030754803 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030754803</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503155956.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1999 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02169978</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030754803</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02169978-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tsvetkov, V. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A 2-extension of the field ℚ of rational numbersof rational numbers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic/Plenum Publishers 1999</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It is proved that the rational number field ℚhas one, and only one, normal 2-extension ℚ(2, t8)/ℚwith group isomorphic to$$\mathbb{Z}_{2\begin{array}{*{20}c} * \\ 2 \\ \end{array} } {\mathbb{Z} \mathord{\left/ {\vphantom {\mathbb{Z} 2}} \right. \kern-\nulldelimiterspace} 2}$$.If Ωis the maximal subfield of a real-closed field, which does not contain$$\sqrt 2 $$,then the algebraic closure$$\bar \Omega $$of Ωis isomorphic to the field$$\Omega \begin{array}{*{20}c} \otimes \\ \mathbb{Q} \\ \end{array} \mathbb{Q}_{(2,\infty )} $$.Bibliography: 7titles.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rational Number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Closure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximal Subfield</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rational Number Field</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical sciences</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1994</subfield><subfield code="g">95(1999), 2 vom: Juni, Seite 2161-2163</subfield><subfield code="w">(DE-627)18219762X</subfield><subfield code="w">(DE-600)1185490-X</subfield><subfield code="w">(DE-576)038888130</subfield><subfield code="x">1072-3374</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:95</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:2161-2163</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02169978</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">95</subfield><subfield code="j">1999</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">2161-2163</subfield></datafield></record></collection>
|
author |
Tsvetkov, V. M. |
spellingShingle |
Tsvetkov, V. M. ddc 510 ssgn 17,1 bkl 31.00 misc Rational Number misc Number Field misc Algebraic Closure misc Maximal Subfield misc Rational Number Field A 2-extension of the field ℚ of rational numbersof rational numbers |
authorStr |
Tsvetkov, V. M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)18219762X |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1072-3374 |
topic_title |
510 VZ 17,1 ssgn 31.00 bkl A 2-extension of the field ℚ of rational numbersof rational numbers Rational Number Number Field Algebraic Closure Maximal Subfield Rational Number Field |
topic |
ddc 510 ssgn 17,1 bkl 31.00 misc Rational Number misc Number Field misc Algebraic Closure misc Maximal Subfield misc Rational Number Field |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.00 misc Rational Number misc Number Field misc Algebraic Closure misc Maximal Subfield misc Rational Number Field |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.00 misc Rational Number misc Number Field misc Algebraic Closure misc Maximal Subfield misc Rational Number Field |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of mathematical sciences |
hierarchy_parent_id |
18219762X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of mathematical sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 |
title |
A 2-extension of the field ℚ of rational numbersof rational numbers |
ctrlnum |
(DE-627)OLC2030754803 (DE-He213)BF02169978-p |
title_full |
A 2-extension of the field ℚ of rational numbersof rational numbers |
author_sort |
Tsvetkov, V. M. |
journal |
Journal of mathematical sciences |
journalStr |
Journal of mathematical sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1999 |
contenttype_str_mv |
txt |
container_start_page |
2161 |
author_browse |
Tsvetkov, V. M. |
container_volume |
95 |
class |
510 VZ 17,1 ssgn 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Tsvetkov, V. M. |
doi_str_mv |
10.1007/BF02169978 |
dewey-full |
510 |
title_sort |
a 2-extension of the field ℚ of rational numbersof rational numbers |
title_auth |
A 2-extension of the field ℚ of rational numbersof rational numbers |
abstract |
Abstract It is proved that the rational number field ℚhas one, and only one, normal 2-extension ℚ(2, t8)/ℚwith group isomorphic to$$\mathbb{Z}_{2\begin{array}{*{20}c} * \\ 2 \\ \end{array} } {\mathbb{Z} \mathord{\left/ {\vphantom {\mathbb{Z} 2}} \right. \kern-\nulldelimiterspace} 2}$$.If Ωis the maximal subfield of a real-closed field, which does not contain$$\sqrt 2 $$,then the algebraic closure$$\bar \Omega $$of Ωis isomorphic to the field$$\Omega \begin{array}{*{20}c} \otimes \\ \mathbb{Q} \\ \end{array} \mathbb{Q}_{(2,\infty )} $$.Bibliography: 7titles. © Kluwer Academic/Plenum Publishers 1999 |
abstractGer |
Abstract It is proved that the rational number field ℚhas one, and only one, normal 2-extension ℚ(2, t8)/ℚwith group isomorphic to$$\mathbb{Z}_{2\begin{array}{*{20}c} * \\ 2 \\ \end{array} } {\mathbb{Z} \mathord{\left/ {\vphantom {\mathbb{Z} 2}} \right. \kern-\nulldelimiterspace} 2}$$.If Ωis the maximal subfield of a real-closed field, which does not contain$$\sqrt 2 $$,then the algebraic closure$$\bar \Omega $$of Ωis isomorphic to the field$$\Omega \begin{array}{*{20}c} \otimes \\ \mathbb{Q} \\ \end{array} \mathbb{Q}_{(2,\infty )} $$.Bibliography: 7titles. © Kluwer Academic/Plenum Publishers 1999 |
abstract_unstemmed |
Abstract It is proved that the rational number field ℚhas one, and only one, normal 2-extension ℚ(2, t8)/ℚwith group isomorphic to$$\mathbb{Z}_{2\begin{array}{*{20}c} * \\ 2 \\ \end{array} } {\mathbb{Z} \mathord{\left/ {\vphantom {\mathbb{Z} 2}} \right. \kern-\nulldelimiterspace} 2}$$.If Ωis the maximal subfield of a real-closed field, which does not contain$$\sqrt 2 $$,then the algebraic closure$$\bar \Omega $$of Ωis isomorphic to the field$$\Omega \begin{array}{*{20}c} \otimes \\ \mathbb{Q} \\ \end{array} \mathbb{Q}_{(2,\infty )} $$.Bibliography: 7titles. © Kluwer Academic/Plenum Publishers 1999 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4310 |
container_issue |
2 |
title_short |
A 2-extension of the field ℚ of rational numbersof rational numbers |
url |
https://doi.org/10.1007/BF02169978 |
remote_bool |
false |
ppnlink |
18219762X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02169978 |
up_date |
2024-07-04T02:54:26.296Z |
_version_ |
1803615381799043072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030754803</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503155956.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1999 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02169978</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030754803</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02169978-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tsvetkov, V. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A 2-extension of the field ℚ of rational numbersof rational numbers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic/Plenum Publishers 1999</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It is proved that the rational number field ℚhas one, and only one, normal 2-extension ℚ(2, t8)/ℚwith group isomorphic to$$\mathbb{Z}_{2\begin{array}{*{20}c} * \\ 2 \\ \end{array} } {\mathbb{Z} \mathord{\left/ {\vphantom {\mathbb{Z} 2}} \right. \kern-\nulldelimiterspace} 2}$$.If Ωis the maximal subfield of a real-closed field, which does not contain$$\sqrt 2 $$,then the algebraic closure$$\bar \Omega $$of Ωis isomorphic to the field$$\Omega \begin{array}{*{20}c} \otimes \\ \mathbb{Q} \\ \end{array} \mathbb{Q}_{(2,\infty )} $$.Bibliography: 7titles.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rational Number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Closure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maximal Subfield</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rational Number Field</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical sciences</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1994</subfield><subfield code="g">95(1999), 2 vom: Juni, Seite 2161-2163</subfield><subfield code="w">(DE-627)18219762X</subfield><subfield code="w">(DE-600)1185490-X</subfield><subfield code="w">(DE-576)038888130</subfield><subfield code="x">1072-3374</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:95</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:2</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:2161-2163</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02169978</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">95</subfield><subfield code="j">1999</subfield><subfield code="e">2</subfield><subfield code="c">06</subfield><subfield code="h">2161-2163</subfield></datafield></record></collection>
|
score |
7.401102 |