Dynamic stresses in a compound body with circular crack under sliding contact on an interface
We have considered the three-dimensional problem of harmonic loading of a circular crack in an elastic composite consisting of two dissimilar half-spaces under sliding contact on the surface of their bonding. The defect is situated in one of the half-spaces perpendicularly to the interface of materi...
Ausführliche Beschreibung
Autor*in: |
Mykhas’kiv, V. V. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, Inc. 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of mathematical sciences - Springer US, 1994, 176(2011), 4 vom: 23. Juni, Seite 590-599 |
---|---|
Übergeordnetes Werk: |
volume:176 ; year:2011 ; number:4 ; day:23 ; month:06 ; pages:590-599 |
Links: |
---|
DOI / URN: |
10.1007/s10958-011-0424-5 |
---|
Katalog-ID: |
OLC2030803081 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2030803081 | ||
003 | DE-627 | ||
005 | 20230503160416.0 | ||
007 | tu | ||
008 | 200819s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10958-011-0424-5 |2 doi | |
035 | |a (DE-627)OLC2030803081 | ||
035 | |a (DE-He213)s10958-011-0424-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Mykhas’kiv, V. V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dynamic stresses in a compound body with circular crack under sliding contact on an interface |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, Inc. 2011 | ||
520 | |a We have considered the three-dimensional problem of harmonic loading of a circular crack in an elastic composite consisting of two dissimilar half-spaces under sliding contact on the surface of their bonding. The defect is situated in one of the half-spaces perpendicularly to the interface of materials. Using the representations of solutions in the form of Helmholtz potentials, we have reduced the problem to a boundary integral equation for the function of dynamic defect opening. Based on the numerical solution of this equation, we have obtained the frequency dependences of mode I stress intensity factor near the crack for different relations between the elastic moduli of components of the composite and the depths of crack location with respect to the interface. | ||
650 | 4 | |a Stress Intensity Factor | |
650 | 4 | |a Stress Intensity Factor | |
650 | 4 | |a Boundary Integral Equation | |
650 | 4 | |a Circular Crack | |
650 | 4 | |a Dynamic Stress Concentration | |
700 | 1 | |a Stankevych, V. Z. |4 aut | |
700 | 1 | |a Glushkov, E. V. |4 aut | |
700 | 1 | |a Glushkova, N. V. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of mathematical sciences |d Springer US, 1994 |g 176(2011), 4 vom: 23. Juni, Seite 590-599 |w (DE-627)18219762X |w (DE-600)1185490-X |w (DE-576)038888130 |x 1072-3374 |7 nnns |
773 | 1 | 8 | |g volume:176 |g year:2011 |g number:4 |g day:23 |g month:06 |g pages:590-599 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10958-011-0424-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
936 | b | k | |a 31.00 |q VZ |
951 | |a AR | ||
952 | |d 176 |j 2011 |e 4 |b 23 |c 06 |h 590-599 |
author_variant |
v v m vv vvm v z s vz vzs e v g ev evg n v g nv nvg |
---|---|
matchkey_str |
article:10723374:2011----::yaisrseiaopudoyihiclrrcudrld |
hierarchy_sort_str |
2011 |
bklnumber |
31.00 |
publishDate |
2011 |
allfields |
10.1007/s10958-011-0424-5 doi (DE-627)OLC2030803081 (DE-He213)s10958-011-0424-5-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Mykhas’kiv, V. V. verfasserin aut Dynamic stresses in a compound body with circular crack under sliding contact on an interface 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2011 We have considered the three-dimensional problem of harmonic loading of a circular crack in an elastic composite consisting of two dissimilar half-spaces under sliding contact on the surface of their bonding. The defect is situated in one of the half-spaces perpendicularly to the interface of materials. Using the representations of solutions in the form of Helmholtz potentials, we have reduced the problem to a boundary integral equation for the function of dynamic defect opening. Based on the numerical solution of this equation, we have obtained the frequency dependences of mode I stress intensity factor near the crack for different relations between the elastic moduli of components of the composite and the depths of crack location with respect to the interface. Stress Intensity Factor Stress Intensity Factor Boundary Integral Equation Circular Crack Dynamic Stress Concentration Stankevych, V. Z. aut Glushkov, E. V. aut Glushkova, N. V. aut Enthalten in Journal of mathematical sciences Springer US, 1994 176(2011), 4 vom: 23. Juni, Seite 590-599 (DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 1072-3374 nnns volume:176 year:2011 number:4 day:23 month:06 pages:590-599 https://doi.org/10.1007/s10958-011-0424-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 31.00 VZ AR 176 2011 4 23 06 590-599 |
spelling |
10.1007/s10958-011-0424-5 doi (DE-627)OLC2030803081 (DE-He213)s10958-011-0424-5-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Mykhas’kiv, V. V. verfasserin aut Dynamic stresses in a compound body with circular crack under sliding contact on an interface 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2011 We have considered the three-dimensional problem of harmonic loading of a circular crack in an elastic composite consisting of two dissimilar half-spaces under sliding contact on the surface of their bonding. The defect is situated in one of the half-spaces perpendicularly to the interface of materials. Using the representations of solutions in the form of Helmholtz potentials, we have reduced the problem to a boundary integral equation for the function of dynamic defect opening. Based on the numerical solution of this equation, we have obtained the frequency dependences of mode I stress intensity factor near the crack for different relations between the elastic moduli of components of the composite and the depths of crack location with respect to the interface. Stress Intensity Factor Stress Intensity Factor Boundary Integral Equation Circular Crack Dynamic Stress Concentration Stankevych, V. Z. aut Glushkov, E. V. aut Glushkova, N. V. aut Enthalten in Journal of mathematical sciences Springer US, 1994 176(2011), 4 vom: 23. Juni, Seite 590-599 (DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 1072-3374 nnns volume:176 year:2011 number:4 day:23 month:06 pages:590-599 https://doi.org/10.1007/s10958-011-0424-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 31.00 VZ AR 176 2011 4 23 06 590-599 |
allfields_unstemmed |
10.1007/s10958-011-0424-5 doi (DE-627)OLC2030803081 (DE-He213)s10958-011-0424-5-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Mykhas’kiv, V. V. verfasserin aut Dynamic stresses in a compound body with circular crack under sliding contact on an interface 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2011 We have considered the three-dimensional problem of harmonic loading of a circular crack in an elastic composite consisting of two dissimilar half-spaces under sliding contact on the surface of their bonding. The defect is situated in one of the half-spaces perpendicularly to the interface of materials. Using the representations of solutions in the form of Helmholtz potentials, we have reduced the problem to a boundary integral equation for the function of dynamic defect opening. Based on the numerical solution of this equation, we have obtained the frequency dependences of mode I stress intensity factor near the crack for different relations between the elastic moduli of components of the composite and the depths of crack location with respect to the interface. Stress Intensity Factor Stress Intensity Factor Boundary Integral Equation Circular Crack Dynamic Stress Concentration Stankevych, V. Z. aut Glushkov, E. V. aut Glushkova, N. V. aut Enthalten in Journal of mathematical sciences Springer US, 1994 176(2011), 4 vom: 23. Juni, Seite 590-599 (DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 1072-3374 nnns volume:176 year:2011 number:4 day:23 month:06 pages:590-599 https://doi.org/10.1007/s10958-011-0424-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 31.00 VZ AR 176 2011 4 23 06 590-599 |
allfieldsGer |
10.1007/s10958-011-0424-5 doi (DE-627)OLC2030803081 (DE-He213)s10958-011-0424-5-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Mykhas’kiv, V. V. verfasserin aut Dynamic stresses in a compound body with circular crack under sliding contact on an interface 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2011 We have considered the three-dimensional problem of harmonic loading of a circular crack in an elastic composite consisting of two dissimilar half-spaces under sliding contact on the surface of their bonding. The defect is situated in one of the half-spaces perpendicularly to the interface of materials. Using the representations of solutions in the form of Helmholtz potentials, we have reduced the problem to a boundary integral equation for the function of dynamic defect opening. Based on the numerical solution of this equation, we have obtained the frequency dependences of mode I stress intensity factor near the crack for different relations between the elastic moduli of components of the composite and the depths of crack location with respect to the interface. Stress Intensity Factor Stress Intensity Factor Boundary Integral Equation Circular Crack Dynamic Stress Concentration Stankevych, V. Z. aut Glushkov, E. V. aut Glushkova, N. V. aut Enthalten in Journal of mathematical sciences Springer US, 1994 176(2011), 4 vom: 23. Juni, Seite 590-599 (DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 1072-3374 nnns volume:176 year:2011 number:4 day:23 month:06 pages:590-599 https://doi.org/10.1007/s10958-011-0424-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 31.00 VZ AR 176 2011 4 23 06 590-599 |
allfieldsSound |
10.1007/s10958-011-0424-5 doi (DE-627)OLC2030803081 (DE-He213)s10958-011-0424-5-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Mykhas’kiv, V. V. verfasserin aut Dynamic stresses in a compound body with circular crack under sliding contact on an interface 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2011 We have considered the three-dimensional problem of harmonic loading of a circular crack in an elastic composite consisting of two dissimilar half-spaces under sliding contact on the surface of their bonding. The defect is situated in one of the half-spaces perpendicularly to the interface of materials. Using the representations of solutions in the form of Helmholtz potentials, we have reduced the problem to a boundary integral equation for the function of dynamic defect opening. Based on the numerical solution of this equation, we have obtained the frequency dependences of mode I stress intensity factor near the crack for different relations between the elastic moduli of components of the composite and the depths of crack location with respect to the interface. Stress Intensity Factor Stress Intensity Factor Boundary Integral Equation Circular Crack Dynamic Stress Concentration Stankevych, V. Z. aut Glushkov, E. V. aut Glushkova, N. V. aut Enthalten in Journal of mathematical sciences Springer US, 1994 176(2011), 4 vom: 23. Juni, Seite 590-599 (DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 1072-3374 nnns volume:176 year:2011 number:4 day:23 month:06 pages:590-599 https://doi.org/10.1007/s10958-011-0424-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 31.00 VZ AR 176 2011 4 23 06 590-599 |
language |
English |
source |
Enthalten in Journal of mathematical sciences 176(2011), 4 vom: 23. Juni, Seite 590-599 volume:176 year:2011 number:4 day:23 month:06 pages:590-599 |
sourceStr |
Enthalten in Journal of mathematical sciences 176(2011), 4 vom: 23. Juni, Seite 590-599 volume:176 year:2011 number:4 day:23 month:06 pages:590-599 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Stress Intensity Factor Boundary Integral Equation Circular Crack Dynamic Stress Concentration |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of mathematical sciences |
authorswithroles_txt_mv |
Mykhas’kiv, V. V. @@aut@@ Stankevych, V. Z. @@aut@@ Glushkov, E. V. @@aut@@ Glushkova, N. V. @@aut@@ |
publishDateDaySort_date |
2011-06-23T00:00:00Z |
hierarchy_top_id |
18219762X |
dewey-sort |
3510 |
id |
OLC2030803081 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030803081</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503160416.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10958-011-0424-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030803081</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10958-011-0424-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mykhas’kiv, V. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic stresses in a compound body with circular crack under sliding contact on an interface</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, Inc. 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We have considered the three-dimensional problem of harmonic loading of a circular crack in an elastic composite consisting of two dissimilar half-spaces under sliding contact on the surface of their bonding. The defect is situated in one of the half-spaces perpendicularly to the interface of materials. Using the representations of solutions in the form of Helmholtz potentials, we have reduced the problem to a boundary integral equation for the function of dynamic defect opening. Based on the numerical solution of this equation, we have obtained the frequency dependences of mode I stress intensity factor near the crack for different relations between the elastic moduli of components of the composite and the depths of crack location with respect to the interface.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Intensity Factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Intensity Factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary Integral Equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circular Crack</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic Stress Concentration</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stankevych, V. Z.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Glushkov, E. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Glushkova, N. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical sciences</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">176(2011), 4 vom: 23. Juni, Seite 590-599</subfield><subfield code="w">(DE-627)18219762X</subfield><subfield code="w">(DE-600)1185490-X</subfield><subfield code="w">(DE-576)038888130</subfield><subfield code="x">1072-3374</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:176</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:4</subfield><subfield code="g">day:23</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:590-599</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10958-011-0424-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">176</subfield><subfield code="j">2011</subfield><subfield code="e">4</subfield><subfield code="b">23</subfield><subfield code="c">06</subfield><subfield code="h">590-599</subfield></datafield></record></collection>
|
author |
Mykhas’kiv, V. V. |
spellingShingle |
Mykhas’kiv, V. V. ddc 510 ssgn 17,1 bkl 31.00 misc Stress Intensity Factor misc Boundary Integral Equation misc Circular Crack misc Dynamic Stress Concentration Dynamic stresses in a compound body with circular crack under sliding contact on an interface |
authorStr |
Mykhas’kiv, V. V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)18219762X |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1072-3374 |
topic_title |
510 VZ 17,1 ssgn 31.00 bkl Dynamic stresses in a compound body with circular crack under sliding contact on an interface Stress Intensity Factor Boundary Integral Equation Circular Crack Dynamic Stress Concentration |
topic |
ddc 510 ssgn 17,1 bkl 31.00 misc Stress Intensity Factor misc Boundary Integral Equation misc Circular Crack misc Dynamic Stress Concentration |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.00 misc Stress Intensity Factor misc Boundary Integral Equation misc Circular Crack misc Dynamic Stress Concentration |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.00 misc Stress Intensity Factor misc Boundary Integral Equation misc Circular Crack misc Dynamic Stress Concentration |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of mathematical sciences |
hierarchy_parent_id |
18219762X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of mathematical sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 |
title |
Dynamic stresses in a compound body with circular crack under sliding contact on an interface |
ctrlnum |
(DE-627)OLC2030803081 (DE-He213)s10958-011-0424-5-p |
title_full |
Dynamic stresses in a compound body with circular crack under sliding contact on an interface |
author_sort |
Mykhas’kiv, V. V. |
journal |
Journal of mathematical sciences |
journalStr |
Journal of mathematical sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
590 |
author_browse |
Mykhas’kiv, V. V. Stankevych, V. Z. Glushkov, E. V. Glushkova, N. V. |
container_volume |
176 |
class |
510 VZ 17,1 ssgn 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Mykhas’kiv, V. V. |
doi_str_mv |
10.1007/s10958-011-0424-5 |
dewey-full |
510 |
title_sort |
dynamic stresses in a compound body with circular crack under sliding contact on an interface |
title_auth |
Dynamic stresses in a compound body with circular crack under sliding contact on an interface |
abstract |
We have considered the three-dimensional problem of harmonic loading of a circular crack in an elastic composite consisting of two dissimilar half-spaces under sliding contact on the surface of their bonding. The defect is situated in one of the half-spaces perpendicularly to the interface of materials. Using the representations of solutions in the form of Helmholtz potentials, we have reduced the problem to a boundary integral equation for the function of dynamic defect opening. Based on the numerical solution of this equation, we have obtained the frequency dependences of mode I stress intensity factor near the crack for different relations between the elastic moduli of components of the composite and the depths of crack location with respect to the interface. © Springer Science+Business Media, Inc. 2011 |
abstractGer |
We have considered the three-dimensional problem of harmonic loading of a circular crack in an elastic composite consisting of two dissimilar half-spaces under sliding contact on the surface of their bonding. The defect is situated in one of the half-spaces perpendicularly to the interface of materials. Using the representations of solutions in the form of Helmholtz potentials, we have reduced the problem to a boundary integral equation for the function of dynamic defect opening. Based on the numerical solution of this equation, we have obtained the frequency dependences of mode I stress intensity factor near the crack for different relations between the elastic moduli of components of the composite and the depths of crack location with respect to the interface. © Springer Science+Business Media, Inc. 2011 |
abstract_unstemmed |
We have considered the three-dimensional problem of harmonic loading of a circular crack in an elastic composite consisting of two dissimilar half-spaces under sliding contact on the surface of their bonding. The defect is situated in one of the half-spaces perpendicularly to the interface of materials. Using the representations of solutions in the form of Helmholtz potentials, we have reduced the problem to a boundary integral equation for the function of dynamic defect opening. Based on the numerical solution of this equation, we have obtained the frequency dependences of mode I stress intensity factor near the crack for different relations between the elastic moduli of components of the composite and the depths of crack location with respect to the interface. © Springer Science+Business Media, Inc. 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 |
container_issue |
4 |
title_short |
Dynamic stresses in a compound body with circular crack under sliding contact on an interface |
url |
https://doi.org/10.1007/s10958-011-0424-5 |
remote_bool |
false |
author2 |
Stankevych, V. Z. Glushkov, E. V. Glushkova, N. V. |
author2Str |
Stankevych, V. Z. Glushkov, E. V. Glushkova, N. V. |
ppnlink |
18219762X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10958-011-0424-5 |
up_date |
2024-07-04T02:59:04.526Z |
_version_ |
1803615673555877888 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030803081</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503160416.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10958-011-0424-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030803081</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10958-011-0424-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mykhas’kiv, V. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic stresses in a compound body with circular crack under sliding contact on an interface</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, Inc. 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We have considered the three-dimensional problem of harmonic loading of a circular crack in an elastic composite consisting of two dissimilar half-spaces under sliding contact on the surface of their bonding. The defect is situated in one of the half-spaces perpendicularly to the interface of materials. Using the representations of solutions in the form of Helmholtz potentials, we have reduced the problem to a boundary integral equation for the function of dynamic defect opening. Based on the numerical solution of this equation, we have obtained the frequency dependences of mode I stress intensity factor near the crack for different relations between the elastic moduli of components of the composite and the depths of crack location with respect to the interface.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Intensity Factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Intensity Factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary Integral Equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circular Crack</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic Stress Concentration</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stankevych, V. Z.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Glushkov, E. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Glushkova, N. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical sciences</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">176(2011), 4 vom: 23. Juni, Seite 590-599</subfield><subfield code="w">(DE-627)18219762X</subfield><subfield code="w">(DE-600)1185490-X</subfield><subfield code="w">(DE-576)038888130</subfield><subfield code="x">1072-3374</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:176</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:4</subfield><subfield code="g">day:23</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:590-599</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10958-011-0424-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">176</subfield><subfield code="j">2011</subfield><subfield code="e">4</subfield><subfield code="b">23</subfield><subfield code="c">06</subfield><subfield code="h">590-599</subfield></datafield></record></collection>
|
score |
7.401023 |