Determination of the Direct Sums of Rational Groups by H-Representations of the Endomorphism Rings up to Equality
Abstract The problem of determination of Abelian groups (up to isomorphism) by their rings of endomorphisms in the class of completely decomposable torsion-free Abelian groups has been solved earlier. For the class of direct sums of rational groups, one can speak of determination of Abelian groups b...
Ausführliche Beschreibung
Autor*in: |
Kurmanova, E. N. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of mathematical sciences - Springer US, 1994, 197(2014), 5 vom: 20. Feb., Seite 649-654 |
---|---|
Übergeordnetes Werk: |
volume:197 ; year:2014 ; number:5 ; day:20 ; month:02 ; pages:649-654 |
Links: |
---|
DOI / URN: |
10.1007/s10958-014-1747-9 |
---|
Katalog-ID: |
OLC2030814733 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2030814733 | ||
003 | DE-627 | ||
005 | 20230503160547.0 | ||
007 | tu | ||
008 | 200819s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10958-014-1747-9 |2 doi | |
035 | |a (DE-627)OLC2030814733 | ||
035 | |a (DE-He213)s10958-014-1747-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Kurmanova, E. N. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Determination of the Direct Sums of Rational Groups by H-Representations of the Endomorphism Rings up to Equality |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2014 | ||
520 | |a Abstract The problem of determination of Abelian groups (up to isomorphism) by their rings of endomorphisms in the class of completely decomposable torsion-free Abelian groups has been solved earlier. For the class of direct sums of rational groups, one can speak of determination of Abelian groups by rational representations of their endomorphism rings up to equality. In this paper, we consider this problem for the class of finite direct sums of rational groups and for some subclasses. | ||
650 | 4 | |a Abelian Group | |
650 | 4 | |a Prime Number | |
650 | 4 | |a Rational Number | |
650 | 4 | |a Rational Group | |
650 | 4 | |a Rational Matrice | |
700 | 1 | |a Sebeldin, A. M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of mathematical sciences |d Springer US, 1994 |g 197(2014), 5 vom: 20. Feb., Seite 649-654 |w (DE-627)18219762X |w (DE-600)1185490-X |w (DE-576)038888130 |x 1072-3374 |7 nnns |
773 | 1 | 8 | |g volume:197 |g year:2014 |g number:5 |g day:20 |g month:02 |g pages:649-654 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10958-014-1747-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
936 | b | k | |a 31.00 |q VZ |
951 | |a AR | ||
952 | |d 197 |j 2014 |e 5 |b 20 |c 02 |h 649-654 |
author_variant |
e n k en enk a m s am ams |
---|---|
matchkey_str |
article:10723374:2014----::eemntooteietusfainlrusyrpeettosfhedm |
hierarchy_sort_str |
2014 |
bklnumber |
31.00 |
publishDate |
2014 |
allfields |
10.1007/s10958-014-1747-9 doi (DE-627)OLC2030814733 (DE-He213)s10958-014-1747-9-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Kurmanova, E. N. verfasserin aut Determination of the Direct Sums of Rational Groups by H-Representations of the Endomorphism Rings up to Equality 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract The problem of determination of Abelian groups (up to isomorphism) by their rings of endomorphisms in the class of completely decomposable torsion-free Abelian groups has been solved earlier. For the class of direct sums of rational groups, one can speak of determination of Abelian groups by rational representations of their endomorphism rings up to equality. In this paper, we consider this problem for the class of finite direct sums of rational groups and for some subclasses. Abelian Group Prime Number Rational Number Rational Group Rational Matrice Sebeldin, A. M. aut Enthalten in Journal of mathematical sciences Springer US, 1994 197(2014), 5 vom: 20. Feb., Seite 649-654 (DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 1072-3374 nnns volume:197 year:2014 number:5 day:20 month:02 pages:649-654 https://doi.org/10.1007/s10958-014-1747-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 31.00 VZ AR 197 2014 5 20 02 649-654 |
spelling |
10.1007/s10958-014-1747-9 doi (DE-627)OLC2030814733 (DE-He213)s10958-014-1747-9-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Kurmanova, E. N. verfasserin aut Determination of the Direct Sums of Rational Groups by H-Representations of the Endomorphism Rings up to Equality 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract The problem of determination of Abelian groups (up to isomorphism) by their rings of endomorphisms in the class of completely decomposable torsion-free Abelian groups has been solved earlier. For the class of direct sums of rational groups, one can speak of determination of Abelian groups by rational representations of their endomorphism rings up to equality. In this paper, we consider this problem for the class of finite direct sums of rational groups and for some subclasses. Abelian Group Prime Number Rational Number Rational Group Rational Matrice Sebeldin, A. M. aut Enthalten in Journal of mathematical sciences Springer US, 1994 197(2014), 5 vom: 20. Feb., Seite 649-654 (DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 1072-3374 nnns volume:197 year:2014 number:5 day:20 month:02 pages:649-654 https://doi.org/10.1007/s10958-014-1747-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 31.00 VZ AR 197 2014 5 20 02 649-654 |
allfields_unstemmed |
10.1007/s10958-014-1747-9 doi (DE-627)OLC2030814733 (DE-He213)s10958-014-1747-9-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Kurmanova, E. N. verfasserin aut Determination of the Direct Sums of Rational Groups by H-Representations of the Endomorphism Rings up to Equality 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract The problem of determination of Abelian groups (up to isomorphism) by their rings of endomorphisms in the class of completely decomposable torsion-free Abelian groups has been solved earlier. For the class of direct sums of rational groups, one can speak of determination of Abelian groups by rational representations of their endomorphism rings up to equality. In this paper, we consider this problem for the class of finite direct sums of rational groups and for some subclasses. Abelian Group Prime Number Rational Number Rational Group Rational Matrice Sebeldin, A. M. aut Enthalten in Journal of mathematical sciences Springer US, 1994 197(2014), 5 vom: 20. Feb., Seite 649-654 (DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 1072-3374 nnns volume:197 year:2014 number:5 day:20 month:02 pages:649-654 https://doi.org/10.1007/s10958-014-1747-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 31.00 VZ AR 197 2014 5 20 02 649-654 |
allfieldsGer |
10.1007/s10958-014-1747-9 doi (DE-627)OLC2030814733 (DE-He213)s10958-014-1747-9-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Kurmanova, E. N. verfasserin aut Determination of the Direct Sums of Rational Groups by H-Representations of the Endomorphism Rings up to Equality 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract The problem of determination of Abelian groups (up to isomorphism) by their rings of endomorphisms in the class of completely decomposable torsion-free Abelian groups has been solved earlier. For the class of direct sums of rational groups, one can speak of determination of Abelian groups by rational representations of their endomorphism rings up to equality. In this paper, we consider this problem for the class of finite direct sums of rational groups and for some subclasses. Abelian Group Prime Number Rational Number Rational Group Rational Matrice Sebeldin, A. M. aut Enthalten in Journal of mathematical sciences Springer US, 1994 197(2014), 5 vom: 20. Feb., Seite 649-654 (DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 1072-3374 nnns volume:197 year:2014 number:5 day:20 month:02 pages:649-654 https://doi.org/10.1007/s10958-014-1747-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 31.00 VZ AR 197 2014 5 20 02 649-654 |
allfieldsSound |
10.1007/s10958-014-1747-9 doi (DE-627)OLC2030814733 (DE-He213)s10958-014-1747-9-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Kurmanova, E. N. verfasserin aut Determination of the Direct Sums of Rational Groups by H-Representations of the Endomorphism Rings up to Equality 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract The problem of determination of Abelian groups (up to isomorphism) by their rings of endomorphisms in the class of completely decomposable torsion-free Abelian groups has been solved earlier. For the class of direct sums of rational groups, one can speak of determination of Abelian groups by rational representations of their endomorphism rings up to equality. In this paper, we consider this problem for the class of finite direct sums of rational groups and for some subclasses. Abelian Group Prime Number Rational Number Rational Group Rational Matrice Sebeldin, A. M. aut Enthalten in Journal of mathematical sciences Springer US, 1994 197(2014), 5 vom: 20. Feb., Seite 649-654 (DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 1072-3374 nnns volume:197 year:2014 number:5 day:20 month:02 pages:649-654 https://doi.org/10.1007/s10958-014-1747-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 31.00 VZ AR 197 2014 5 20 02 649-654 |
language |
English |
source |
Enthalten in Journal of mathematical sciences 197(2014), 5 vom: 20. Feb., Seite 649-654 volume:197 year:2014 number:5 day:20 month:02 pages:649-654 |
sourceStr |
Enthalten in Journal of mathematical sciences 197(2014), 5 vom: 20. Feb., Seite 649-654 volume:197 year:2014 number:5 day:20 month:02 pages:649-654 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Abelian Group Prime Number Rational Number Rational Group Rational Matrice |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of mathematical sciences |
authorswithroles_txt_mv |
Kurmanova, E. N. @@aut@@ Sebeldin, A. M. @@aut@@ |
publishDateDaySort_date |
2014-02-20T00:00:00Z |
hierarchy_top_id |
18219762X |
dewey-sort |
3510 |
id |
OLC2030814733 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030814733</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503160547.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10958-014-1747-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030814733</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10958-014-1747-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kurmanova, E. N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Determination of the Direct Sums of Rational Groups by H-Representations of the Endomorphism Rings up to Equality</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The problem of determination of Abelian groups (up to isomorphism) by their rings of endomorphisms in the class of completely decomposable torsion-free Abelian groups has been solved earlier. For the class of direct sums of rational groups, one can speak of determination of Abelian groups by rational representations of their endomorphism rings up to equality. In this paper, we consider this problem for the class of finite direct sums of rational groups and for some subclasses.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abelian Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prime Number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rational Number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rational Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rational Matrice</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sebeldin, A. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical sciences</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">197(2014), 5 vom: 20. Feb., Seite 649-654</subfield><subfield code="w">(DE-627)18219762X</subfield><subfield code="w">(DE-600)1185490-X</subfield><subfield code="w">(DE-576)038888130</subfield><subfield code="x">1072-3374</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:197</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:5</subfield><subfield code="g">day:20</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:649-654</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10958-014-1747-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">197</subfield><subfield code="j">2014</subfield><subfield code="e">5</subfield><subfield code="b">20</subfield><subfield code="c">02</subfield><subfield code="h">649-654</subfield></datafield></record></collection>
|
author |
Kurmanova, E. N. |
spellingShingle |
Kurmanova, E. N. ddc 510 ssgn 17,1 bkl 31.00 misc Abelian Group misc Prime Number misc Rational Number misc Rational Group misc Rational Matrice Determination of the Direct Sums of Rational Groups by H-Representations of the Endomorphism Rings up to Equality |
authorStr |
Kurmanova, E. N. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)18219762X |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1072-3374 |
topic_title |
510 VZ 17,1 ssgn 31.00 bkl Determination of the Direct Sums of Rational Groups by H-Representations of the Endomorphism Rings up to Equality Abelian Group Prime Number Rational Number Rational Group Rational Matrice |
topic |
ddc 510 ssgn 17,1 bkl 31.00 misc Abelian Group misc Prime Number misc Rational Number misc Rational Group misc Rational Matrice |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.00 misc Abelian Group misc Prime Number misc Rational Number misc Rational Group misc Rational Matrice |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.00 misc Abelian Group misc Prime Number misc Rational Number misc Rational Group misc Rational Matrice |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of mathematical sciences |
hierarchy_parent_id |
18219762X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of mathematical sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 |
title |
Determination of the Direct Sums of Rational Groups by H-Representations of the Endomorphism Rings up to Equality |
ctrlnum |
(DE-627)OLC2030814733 (DE-He213)s10958-014-1747-9-p |
title_full |
Determination of the Direct Sums of Rational Groups by H-Representations of the Endomorphism Rings up to Equality |
author_sort |
Kurmanova, E. N. |
journal |
Journal of mathematical sciences |
journalStr |
Journal of mathematical sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
649 |
author_browse |
Kurmanova, E. N. Sebeldin, A. M. |
container_volume |
197 |
class |
510 VZ 17,1 ssgn 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Kurmanova, E. N. |
doi_str_mv |
10.1007/s10958-014-1747-9 |
dewey-full |
510 |
title_sort |
determination of the direct sums of rational groups by h-representations of the endomorphism rings up to equality |
title_auth |
Determination of the Direct Sums of Rational Groups by H-Representations of the Endomorphism Rings up to Equality |
abstract |
Abstract The problem of determination of Abelian groups (up to isomorphism) by their rings of endomorphisms in the class of completely decomposable torsion-free Abelian groups has been solved earlier. For the class of direct sums of rational groups, one can speak of determination of Abelian groups by rational representations of their endomorphism rings up to equality. In this paper, we consider this problem for the class of finite direct sums of rational groups and for some subclasses. © Springer Science+Business Media New York 2014 |
abstractGer |
Abstract The problem of determination of Abelian groups (up to isomorphism) by their rings of endomorphisms in the class of completely decomposable torsion-free Abelian groups has been solved earlier. For the class of direct sums of rational groups, one can speak of determination of Abelian groups by rational representations of their endomorphism rings up to equality. In this paper, we consider this problem for the class of finite direct sums of rational groups and for some subclasses. © Springer Science+Business Media New York 2014 |
abstract_unstemmed |
Abstract The problem of determination of Abelian groups (up to isomorphism) by their rings of endomorphisms in the class of completely decomposable torsion-free Abelian groups has been solved earlier. For the class of direct sums of rational groups, one can speak of determination of Abelian groups by rational representations of their endomorphism rings up to equality. In this paper, we consider this problem for the class of finite direct sums of rational groups and for some subclasses. © Springer Science+Business Media New York 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 |
container_issue |
5 |
title_short |
Determination of the Direct Sums of Rational Groups by H-Representations of the Endomorphism Rings up to Equality |
url |
https://doi.org/10.1007/s10958-014-1747-9 |
remote_bool |
false |
author2 |
Sebeldin, A. M. |
author2Str |
Sebeldin, A. M. |
ppnlink |
18219762X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10958-014-1747-9 |
up_date |
2024-07-04T03:00:13.849Z |
_version_ |
1803615746248409088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2030814733</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503160547.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10958-014-1747-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2030814733</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10958-014-1747-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kurmanova, E. N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Determination of the Direct Sums of Rational Groups by H-Representations of the Endomorphism Rings up to Equality</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The problem of determination of Abelian groups (up to isomorphism) by their rings of endomorphisms in the class of completely decomposable torsion-free Abelian groups has been solved earlier. For the class of direct sums of rational groups, one can speak of determination of Abelian groups by rational representations of their endomorphism rings up to equality. In this paper, we consider this problem for the class of finite direct sums of rational groups and for some subclasses.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abelian Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prime Number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rational Number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rational Group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rational Matrice</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sebeldin, A. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical sciences</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">197(2014), 5 vom: 20. Feb., Seite 649-654</subfield><subfield code="w">(DE-627)18219762X</subfield><subfield code="w">(DE-600)1185490-X</subfield><subfield code="w">(DE-576)038888130</subfield><subfield code="x">1072-3374</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:197</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:5</subfield><subfield code="g">day:20</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:649-654</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10958-014-1747-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">197</subfield><subfield code="j">2014</subfield><subfield code="e">5</subfield><subfield code="b">20</subfield><subfield code="c">02</subfield><subfield code="h">649-654</subfield></datafield></record></collection>
|
score |
7.4009514 |