Rational homotopy theory of spaces 1-connected by shape
Abstract A rational shape type and a strong rational shape type are defined for the class of spaces 1-connected by shape. This class is a natural generalization of the class of 1-connected spaces for which the rational homotopy theory was constructed in work [10]. With the use of the category of inv...
Ausführliche Beschreibung
Autor*in: |
Marchenko, Vladimir V. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of mathematical sciences - Springer US, 1994, 242(2019), 3 vom: 29. Aug., Seite 413-426 |
---|---|
Übergeordnetes Werk: |
volume:242 ; year:2019 ; number:3 ; day:29 ; month:08 ; pages:413-426 |
Links: |
---|
DOI / URN: |
10.1007/s10958-019-04486-5 |
---|
Katalog-ID: |
OLC203084179X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC203084179X | ||
003 | DE-627 | ||
005 | 20230503160857.0 | ||
007 | tu | ||
008 | 200819s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10958-019-04486-5 |2 doi | |
035 | |a (DE-627)OLC203084179X | ||
035 | |a (DE-He213)s10958-019-04486-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Marchenko, Vladimir V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Rational homotopy theory of spaces 1-connected by shape |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2019 | ||
520 | |a Abstract A rational shape type and a strong rational shape type are defined for the class of spaces 1-connected by shape. This class is a natural generalization of the class of 1-connected spaces for which the rational homotopy theory was constructed in work [10]. With the use of the category of inverse systems, the result in [10] on the equivalence of homotopy theories is extended onto the class of spaces 1-connected by shape. | ||
650 | 4 | |a Homotopy theory | |
650 | 4 | |a rational homotopy theory | |
650 | 4 | |a theory of shape | |
650 | 4 | |a rational shape theory | |
773 | 0 | 8 | |i Enthalten in |t Journal of mathematical sciences |d Springer US, 1994 |g 242(2019), 3 vom: 29. Aug., Seite 413-426 |w (DE-627)18219762X |w (DE-600)1185490-X |w (DE-576)038888130 |x 1072-3374 |7 nnns |
773 | 1 | 8 | |g volume:242 |g year:2019 |g number:3 |g day:29 |g month:08 |g pages:413-426 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10958-019-04486-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 31.00 |q VZ |
951 | |a AR | ||
952 | |d 242 |j 2019 |e 3 |b 29 |c 08 |h 413-426 |
author_variant |
v v m vv vvm |
---|---|
matchkey_str |
article:10723374:2019----::ainloooyhoyfpcsc |
hierarchy_sort_str |
2019 |
bklnumber |
31.00 |
publishDate |
2019 |
allfields |
10.1007/s10958-019-04486-5 doi (DE-627)OLC203084179X (DE-He213)s10958-019-04486-5-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Marchenko, Vladimir V. verfasserin aut Rational homotopy theory of spaces 1-connected by shape 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract A rational shape type and a strong rational shape type are defined for the class of spaces 1-connected by shape. This class is a natural generalization of the class of 1-connected spaces for which the rational homotopy theory was constructed in work [10]. With the use of the category of inverse systems, the result in [10] on the equivalence of homotopy theories is extended onto the class of spaces 1-connected by shape. Homotopy theory rational homotopy theory theory of shape rational shape theory Enthalten in Journal of mathematical sciences Springer US, 1994 242(2019), 3 vom: 29. Aug., Seite 413-426 (DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 1072-3374 nnns volume:242 year:2019 number:3 day:29 month:08 pages:413-426 https://doi.org/10.1007/s10958-019-04486-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.00 VZ AR 242 2019 3 29 08 413-426 |
spelling |
10.1007/s10958-019-04486-5 doi (DE-627)OLC203084179X (DE-He213)s10958-019-04486-5-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Marchenko, Vladimir V. verfasserin aut Rational homotopy theory of spaces 1-connected by shape 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract A rational shape type and a strong rational shape type are defined for the class of spaces 1-connected by shape. This class is a natural generalization of the class of 1-connected spaces for which the rational homotopy theory was constructed in work [10]. With the use of the category of inverse systems, the result in [10] on the equivalence of homotopy theories is extended onto the class of spaces 1-connected by shape. Homotopy theory rational homotopy theory theory of shape rational shape theory Enthalten in Journal of mathematical sciences Springer US, 1994 242(2019), 3 vom: 29. Aug., Seite 413-426 (DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 1072-3374 nnns volume:242 year:2019 number:3 day:29 month:08 pages:413-426 https://doi.org/10.1007/s10958-019-04486-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.00 VZ AR 242 2019 3 29 08 413-426 |
allfields_unstemmed |
10.1007/s10958-019-04486-5 doi (DE-627)OLC203084179X (DE-He213)s10958-019-04486-5-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Marchenko, Vladimir V. verfasserin aut Rational homotopy theory of spaces 1-connected by shape 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract A rational shape type and a strong rational shape type are defined for the class of spaces 1-connected by shape. This class is a natural generalization of the class of 1-connected spaces for which the rational homotopy theory was constructed in work [10]. With the use of the category of inverse systems, the result in [10] on the equivalence of homotopy theories is extended onto the class of spaces 1-connected by shape. Homotopy theory rational homotopy theory theory of shape rational shape theory Enthalten in Journal of mathematical sciences Springer US, 1994 242(2019), 3 vom: 29. Aug., Seite 413-426 (DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 1072-3374 nnns volume:242 year:2019 number:3 day:29 month:08 pages:413-426 https://doi.org/10.1007/s10958-019-04486-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.00 VZ AR 242 2019 3 29 08 413-426 |
allfieldsGer |
10.1007/s10958-019-04486-5 doi (DE-627)OLC203084179X (DE-He213)s10958-019-04486-5-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Marchenko, Vladimir V. verfasserin aut Rational homotopy theory of spaces 1-connected by shape 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract A rational shape type and a strong rational shape type are defined for the class of spaces 1-connected by shape. This class is a natural generalization of the class of 1-connected spaces for which the rational homotopy theory was constructed in work [10]. With the use of the category of inverse systems, the result in [10] on the equivalence of homotopy theories is extended onto the class of spaces 1-connected by shape. Homotopy theory rational homotopy theory theory of shape rational shape theory Enthalten in Journal of mathematical sciences Springer US, 1994 242(2019), 3 vom: 29. Aug., Seite 413-426 (DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 1072-3374 nnns volume:242 year:2019 number:3 day:29 month:08 pages:413-426 https://doi.org/10.1007/s10958-019-04486-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.00 VZ AR 242 2019 3 29 08 413-426 |
allfieldsSound |
10.1007/s10958-019-04486-5 doi (DE-627)OLC203084179X (DE-He213)s10958-019-04486-5-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Marchenko, Vladimir V. verfasserin aut Rational homotopy theory of spaces 1-connected by shape 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract A rational shape type and a strong rational shape type are defined for the class of spaces 1-connected by shape. This class is a natural generalization of the class of 1-connected spaces for which the rational homotopy theory was constructed in work [10]. With the use of the category of inverse systems, the result in [10] on the equivalence of homotopy theories is extended onto the class of spaces 1-connected by shape. Homotopy theory rational homotopy theory theory of shape rational shape theory Enthalten in Journal of mathematical sciences Springer US, 1994 242(2019), 3 vom: 29. Aug., Seite 413-426 (DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 1072-3374 nnns volume:242 year:2019 number:3 day:29 month:08 pages:413-426 https://doi.org/10.1007/s10958-019-04486-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.00 VZ AR 242 2019 3 29 08 413-426 |
language |
English |
source |
Enthalten in Journal of mathematical sciences 242(2019), 3 vom: 29. Aug., Seite 413-426 volume:242 year:2019 number:3 day:29 month:08 pages:413-426 |
sourceStr |
Enthalten in Journal of mathematical sciences 242(2019), 3 vom: 29. Aug., Seite 413-426 volume:242 year:2019 number:3 day:29 month:08 pages:413-426 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Homotopy theory rational homotopy theory theory of shape rational shape theory |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of mathematical sciences |
authorswithroles_txt_mv |
Marchenko, Vladimir V. @@aut@@ |
publishDateDaySort_date |
2019-08-29T00:00:00Z |
hierarchy_top_id |
18219762X |
dewey-sort |
3510 |
id |
OLC203084179X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC203084179X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503160857.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10958-019-04486-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC203084179X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10958-019-04486-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marchenko, Vladimir V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rational homotopy theory of spaces 1-connected by shape</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A rational shape type and a strong rational shape type are defined for the class of spaces 1-connected by shape. This class is a natural generalization of the class of 1-connected spaces for which the rational homotopy theory was constructed in work [10]. With the use of the category of inverse systems, the result in [10] on the equivalence of homotopy theories is extended onto the class of spaces 1-connected by shape.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rational homotopy theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">theory of shape</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rational shape theory</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical sciences</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">242(2019), 3 vom: 29. Aug., Seite 413-426</subfield><subfield code="w">(DE-627)18219762X</subfield><subfield code="w">(DE-600)1185490-X</subfield><subfield code="w">(DE-576)038888130</subfield><subfield code="x">1072-3374</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:242</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:3</subfield><subfield code="g">day:29</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:413-426</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10958-019-04486-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">242</subfield><subfield code="j">2019</subfield><subfield code="e">3</subfield><subfield code="b">29</subfield><subfield code="c">08</subfield><subfield code="h">413-426</subfield></datafield></record></collection>
|
author |
Marchenko, Vladimir V. |
spellingShingle |
Marchenko, Vladimir V. ddc 510 ssgn 17,1 bkl 31.00 misc Homotopy theory misc rational homotopy theory misc theory of shape misc rational shape theory Rational homotopy theory of spaces 1-connected by shape |
authorStr |
Marchenko, Vladimir V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)18219762X |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1072-3374 |
topic_title |
510 VZ 17,1 ssgn 31.00 bkl Rational homotopy theory of spaces 1-connected by shape Homotopy theory rational homotopy theory theory of shape rational shape theory |
topic |
ddc 510 ssgn 17,1 bkl 31.00 misc Homotopy theory misc rational homotopy theory misc theory of shape misc rational shape theory |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.00 misc Homotopy theory misc rational homotopy theory misc theory of shape misc rational shape theory |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.00 misc Homotopy theory misc rational homotopy theory misc theory of shape misc rational shape theory |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of mathematical sciences |
hierarchy_parent_id |
18219762X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of mathematical sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)18219762X (DE-600)1185490-X (DE-576)038888130 |
title |
Rational homotopy theory of spaces 1-connected by shape |
ctrlnum |
(DE-627)OLC203084179X (DE-He213)s10958-019-04486-5-p |
title_full |
Rational homotopy theory of spaces 1-connected by shape |
author_sort |
Marchenko, Vladimir V. |
journal |
Journal of mathematical sciences |
journalStr |
Journal of mathematical sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
413 |
author_browse |
Marchenko, Vladimir V. |
container_volume |
242 |
class |
510 VZ 17,1 ssgn 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Marchenko, Vladimir V. |
doi_str_mv |
10.1007/s10958-019-04486-5 |
dewey-full |
510 |
title_sort |
rational homotopy theory of spaces 1-connected by shape |
title_auth |
Rational homotopy theory of spaces 1-connected by shape |
abstract |
Abstract A rational shape type and a strong rational shape type are defined for the class of spaces 1-connected by shape. This class is a natural generalization of the class of 1-connected spaces for which the rational homotopy theory was constructed in work [10]. With the use of the category of inverse systems, the result in [10] on the equivalence of homotopy theories is extended onto the class of spaces 1-connected by shape. © Springer Science+Business Media, LLC, part of Springer Nature 2019 |
abstractGer |
Abstract A rational shape type and a strong rational shape type are defined for the class of spaces 1-connected by shape. This class is a natural generalization of the class of 1-connected spaces for which the rational homotopy theory was constructed in work [10]. With the use of the category of inverse systems, the result in [10] on the equivalence of homotopy theories is extended onto the class of spaces 1-connected by shape. © Springer Science+Business Media, LLC, part of Springer Nature 2019 |
abstract_unstemmed |
Abstract A rational shape type and a strong rational shape type are defined for the class of spaces 1-connected by shape. This class is a natural generalization of the class of 1-connected spaces for which the rational homotopy theory was constructed in work [10]. With the use of the category of inverse systems, the result in [10] on the equivalence of homotopy theories is extended onto the class of spaces 1-connected by shape. © Springer Science+Business Media, LLC, part of Springer Nature 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
3 |
title_short |
Rational homotopy theory of spaces 1-connected by shape |
url |
https://doi.org/10.1007/s10958-019-04486-5 |
remote_bool |
false |
ppnlink |
18219762X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10958-019-04486-5 |
up_date |
2024-07-04T03:02:51.073Z |
_version_ |
1803615911109722112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC203084179X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503160857.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10958-019-04486-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC203084179X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10958-019-04486-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marchenko, Vladimir V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rational homotopy theory of spaces 1-connected by shape</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A rational shape type and a strong rational shape type are defined for the class of spaces 1-connected by shape. This class is a natural generalization of the class of 1-connected spaces for which the rational homotopy theory was constructed in work [10]. With the use of the category of inverse systems, the result in [10] on the equivalence of homotopy theories is extended onto the class of spaces 1-connected by shape.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rational homotopy theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">theory of shape</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rational shape theory</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical sciences</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">242(2019), 3 vom: 29. Aug., Seite 413-426</subfield><subfield code="w">(DE-627)18219762X</subfield><subfield code="w">(DE-600)1185490-X</subfield><subfield code="w">(DE-576)038888130</subfield><subfield code="x">1072-3374</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:242</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:3</subfield><subfield code="g">day:29</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:413-426</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10958-019-04486-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">242</subfield><subfield code="j">2019</subfield><subfield code="e">3</subfield><subfield code="b">29</subfield><subfield code="c">08</subfield><subfield code="h">413-426</subfield></datafield></record></collection>
|
score |
7.400646 |