Asymptotics of the Multidimensional Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation Near a Quasistationary Solution
Asymptotic solutions of the multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation with an influence function that is invariant with respect to a spatial shift are constructed. The asymptotic solutions are perturbations of a spatially-homogeneous quasistationary exact solution. Gen...
Ausführliche Beschreibung
Autor*in: |
Levchenko, E. A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation |
---|
Anmerkung: |
© Springer Science+Business Media New York 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Russian physics journal - Springer US, 1992, 58(2015), 7 vom: Nov., Seite 952-958 |
---|---|
Übergeordnetes Werk: |
volume:58 ; year:2015 ; number:7 ; month:11 ; pages:952-958 |
Links: |
---|
DOI / URN: |
10.1007/s11182-015-0594-6 |
---|
Katalog-ID: |
OLC203308373X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC203308373X | ||
003 | DE-627 | ||
005 | 20230504040007.0 | ||
007 | tu | ||
008 | 200819s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11182-015-0594-6 |2 doi | |
035 | |a (DE-627)OLC203308373X | ||
035 | |a (DE-He213)s11182-015-0594-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 370 |q VZ |
100 | 1 | |a Levchenko, E. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Asymptotics of the Multidimensional Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation Near a Quasistationary Solution |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2015 | ||
520 | |a Asymptotic solutions of the multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation with an influence function that is invariant with respect to a spatial shift are constructed. The asymptotic solutions are perturbations of a spatially-homogeneous quasistationary exact solution. General expressions are illustrated by the example of a two-dimensional equation with a Gaussian initial condition. | ||
650 | 4 | |a multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation | |
650 | 4 | |a quasistationary solution | |
650 | 4 | |a asymptotic solutions | |
700 | 1 | |a Trifonov, A. Yu. |4 aut | |
700 | 1 | |a Shapovalov, A. V. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Russian physics journal |d Springer US, 1992 |g 58(2015), 7 vom: Nov., Seite 952-958 |w (DE-627)131169718 |w (DE-600)1138228-4 |w (DE-576)033029253 |x 1064-8887 |7 nnns |
773 | 1 | 8 | |g volume:58 |g year:2015 |g number:7 |g month:11 |g pages:952-958 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11182-015-0594-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 58 |j 2015 |e 7 |c 11 |h 952-958 |
author_variant |
e a l ea eal a y t ay ayt a v s av avs |
---|---|
matchkey_str |
article:10648887:2015----::smttcoteutdmninlolclihromgrvervkiiknvqai |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s11182-015-0594-6 doi (DE-627)OLC203308373X (DE-He213)s11182-015-0594-6-p DE-627 ger DE-627 rakwb eng 530 370 VZ Levchenko, E. A. verfasserin aut Asymptotics of the Multidimensional Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation Near a Quasistationary Solution 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Asymptotic solutions of the multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation with an influence function that is invariant with respect to a spatial shift are constructed. The asymptotic solutions are perturbations of a spatially-homogeneous quasistationary exact solution. General expressions are illustrated by the example of a two-dimensional equation with a Gaussian initial condition. multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation quasistationary solution asymptotic solutions Trifonov, A. Yu. aut Shapovalov, A. V. aut Enthalten in Russian physics journal Springer US, 1992 58(2015), 7 vom: Nov., Seite 952-958 (DE-627)131169718 (DE-600)1138228-4 (DE-576)033029253 1064-8887 nnns volume:58 year:2015 number:7 month:11 pages:952-958 https://doi.org/10.1007/s11182-015-0594-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 58 2015 7 11 952-958 |
spelling |
10.1007/s11182-015-0594-6 doi (DE-627)OLC203308373X (DE-He213)s11182-015-0594-6-p DE-627 ger DE-627 rakwb eng 530 370 VZ Levchenko, E. A. verfasserin aut Asymptotics of the Multidimensional Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation Near a Quasistationary Solution 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Asymptotic solutions of the multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation with an influence function that is invariant with respect to a spatial shift are constructed. The asymptotic solutions are perturbations of a spatially-homogeneous quasistationary exact solution. General expressions are illustrated by the example of a two-dimensional equation with a Gaussian initial condition. multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation quasistationary solution asymptotic solutions Trifonov, A. Yu. aut Shapovalov, A. V. aut Enthalten in Russian physics journal Springer US, 1992 58(2015), 7 vom: Nov., Seite 952-958 (DE-627)131169718 (DE-600)1138228-4 (DE-576)033029253 1064-8887 nnns volume:58 year:2015 number:7 month:11 pages:952-958 https://doi.org/10.1007/s11182-015-0594-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 58 2015 7 11 952-958 |
allfields_unstemmed |
10.1007/s11182-015-0594-6 doi (DE-627)OLC203308373X (DE-He213)s11182-015-0594-6-p DE-627 ger DE-627 rakwb eng 530 370 VZ Levchenko, E. A. verfasserin aut Asymptotics of the Multidimensional Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation Near a Quasistationary Solution 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Asymptotic solutions of the multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation with an influence function that is invariant with respect to a spatial shift are constructed. The asymptotic solutions are perturbations of a spatially-homogeneous quasistationary exact solution. General expressions are illustrated by the example of a two-dimensional equation with a Gaussian initial condition. multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation quasistationary solution asymptotic solutions Trifonov, A. Yu. aut Shapovalov, A. V. aut Enthalten in Russian physics journal Springer US, 1992 58(2015), 7 vom: Nov., Seite 952-958 (DE-627)131169718 (DE-600)1138228-4 (DE-576)033029253 1064-8887 nnns volume:58 year:2015 number:7 month:11 pages:952-958 https://doi.org/10.1007/s11182-015-0594-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 58 2015 7 11 952-958 |
allfieldsGer |
10.1007/s11182-015-0594-6 doi (DE-627)OLC203308373X (DE-He213)s11182-015-0594-6-p DE-627 ger DE-627 rakwb eng 530 370 VZ Levchenko, E. A. verfasserin aut Asymptotics of the Multidimensional Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation Near a Quasistationary Solution 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Asymptotic solutions of the multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation with an influence function that is invariant with respect to a spatial shift are constructed. The asymptotic solutions are perturbations of a spatially-homogeneous quasistationary exact solution. General expressions are illustrated by the example of a two-dimensional equation with a Gaussian initial condition. multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation quasistationary solution asymptotic solutions Trifonov, A. Yu. aut Shapovalov, A. V. aut Enthalten in Russian physics journal Springer US, 1992 58(2015), 7 vom: Nov., Seite 952-958 (DE-627)131169718 (DE-600)1138228-4 (DE-576)033029253 1064-8887 nnns volume:58 year:2015 number:7 month:11 pages:952-958 https://doi.org/10.1007/s11182-015-0594-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 58 2015 7 11 952-958 |
allfieldsSound |
10.1007/s11182-015-0594-6 doi (DE-627)OLC203308373X (DE-He213)s11182-015-0594-6-p DE-627 ger DE-627 rakwb eng 530 370 VZ Levchenko, E. A. verfasserin aut Asymptotics of the Multidimensional Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation Near a Quasistationary Solution 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Asymptotic solutions of the multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation with an influence function that is invariant with respect to a spatial shift are constructed. The asymptotic solutions are perturbations of a spatially-homogeneous quasistationary exact solution. General expressions are illustrated by the example of a two-dimensional equation with a Gaussian initial condition. multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation quasistationary solution asymptotic solutions Trifonov, A. Yu. aut Shapovalov, A. V. aut Enthalten in Russian physics journal Springer US, 1992 58(2015), 7 vom: Nov., Seite 952-958 (DE-627)131169718 (DE-600)1138228-4 (DE-576)033029253 1064-8887 nnns volume:58 year:2015 number:7 month:11 pages:952-958 https://doi.org/10.1007/s11182-015-0594-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 58 2015 7 11 952-958 |
language |
English |
source |
Enthalten in Russian physics journal 58(2015), 7 vom: Nov., Seite 952-958 volume:58 year:2015 number:7 month:11 pages:952-958 |
sourceStr |
Enthalten in Russian physics journal 58(2015), 7 vom: Nov., Seite 952-958 volume:58 year:2015 number:7 month:11 pages:952-958 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation quasistationary solution asymptotic solutions |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Russian physics journal |
authorswithroles_txt_mv |
Levchenko, E. A. @@aut@@ Trifonov, A. Yu. @@aut@@ Shapovalov, A. V. @@aut@@ |
publishDateDaySort_date |
2015-11-01T00:00:00Z |
hierarchy_top_id |
131169718 |
dewey-sort |
3530 |
id |
OLC203308373X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC203308373X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504040007.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11182-015-0594-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC203308373X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11182-015-0594-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">370</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Levchenko, E. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotics of the Multidimensional Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation Near a Quasistationary Solution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Asymptotic solutions of the multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation with an influence function that is invariant with respect to a spatial shift are constructed. The asymptotic solutions are perturbations of a spatially-homogeneous quasistationary exact solution. General expressions are illustrated by the example of a two-dimensional equation with a Gaussian initial condition.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quasistationary solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">asymptotic solutions</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trifonov, A. Yu.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shapovalov, A. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Russian physics journal</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">58(2015), 7 vom: Nov., Seite 952-958</subfield><subfield code="w">(DE-627)131169718</subfield><subfield code="w">(DE-600)1138228-4</subfield><subfield code="w">(DE-576)033029253</subfield><subfield code="x">1064-8887</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:7</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:952-958</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11182-015-0594-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">2015</subfield><subfield code="e">7</subfield><subfield code="c">11</subfield><subfield code="h">952-958</subfield></datafield></record></collection>
|
author |
Levchenko, E. A. |
spellingShingle |
Levchenko, E. A. ddc 530 misc multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation misc quasistationary solution misc asymptotic solutions Asymptotics of the Multidimensional Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation Near a Quasistationary Solution |
authorStr |
Levchenko, E. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131169718 |
format |
Article |
dewey-ones |
530 - Physics 370 - Education |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1064-8887 |
topic_title |
530 370 VZ Asymptotics of the Multidimensional Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation Near a Quasistationary Solution multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation quasistationary solution asymptotic solutions |
topic |
ddc 530 misc multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation misc quasistationary solution misc asymptotic solutions |
topic_unstemmed |
ddc 530 misc multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation misc quasistationary solution misc asymptotic solutions |
topic_browse |
ddc 530 misc multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation misc quasistationary solution misc asymptotic solutions |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Russian physics journal |
hierarchy_parent_id |
131169718 |
dewey-tens |
530 - Physics 370 - Education |
hierarchy_top_title |
Russian physics journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131169718 (DE-600)1138228-4 (DE-576)033029253 |
title |
Asymptotics of the Multidimensional Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation Near a Quasistationary Solution |
ctrlnum |
(DE-627)OLC203308373X (DE-He213)s11182-015-0594-6-p |
title_full |
Asymptotics of the Multidimensional Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation Near a Quasistationary Solution |
author_sort |
Levchenko, E. A. |
journal |
Russian physics journal |
journalStr |
Russian physics journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
952 |
author_browse |
Levchenko, E. A. Trifonov, A. Yu. Shapovalov, A. V. |
container_volume |
58 |
class |
530 370 VZ |
format_se |
Aufsätze |
author-letter |
Levchenko, E. A. |
doi_str_mv |
10.1007/s11182-015-0594-6 |
dewey-full |
530 370 |
title_sort |
asymptotics of the multidimensional nonlocal fisher–kolmogorov–petrovskii–piskunov equation near a quasistationary solution |
title_auth |
Asymptotics of the Multidimensional Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation Near a Quasistationary Solution |
abstract |
Asymptotic solutions of the multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation with an influence function that is invariant with respect to a spatial shift are constructed. The asymptotic solutions are perturbations of a spatially-homogeneous quasistationary exact solution. General expressions are illustrated by the example of a two-dimensional equation with a Gaussian initial condition. © Springer Science+Business Media New York 2015 |
abstractGer |
Asymptotic solutions of the multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation with an influence function that is invariant with respect to a spatial shift are constructed. The asymptotic solutions are perturbations of a spatially-homogeneous quasistationary exact solution. General expressions are illustrated by the example of a two-dimensional equation with a Gaussian initial condition. © Springer Science+Business Media New York 2015 |
abstract_unstemmed |
Asymptotic solutions of the multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation with an influence function that is invariant with respect to a spatial shift are constructed. The asymptotic solutions are perturbations of a spatially-homogeneous quasistationary exact solution. General expressions are illustrated by the example of a two-dimensional equation with a Gaussian initial condition. © Springer Science+Business Media New York 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
7 |
title_short |
Asymptotics of the Multidimensional Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation Near a Quasistationary Solution |
url |
https://doi.org/10.1007/s11182-015-0594-6 |
remote_bool |
false |
author2 |
Trifonov, A. Yu Shapovalov, A. V. |
author2Str |
Trifonov, A. Yu Shapovalov, A. V. |
ppnlink |
131169718 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11182-015-0594-6 |
up_date |
2024-07-03T15:37:54.462Z |
_version_ |
1803572818172968960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC203308373X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504040007.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11182-015-0594-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC203308373X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11182-015-0594-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">370</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Levchenko, E. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotics of the Multidimensional Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation Near a Quasistationary Solution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Asymptotic solutions of the multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation with an influence function that is invariant with respect to a spatial shift are constructed. The asymptotic solutions are perturbations of a spatially-homogeneous quasistationary exact solution. General expressions are illustrated by the example of a two-dimensional equation with a Gaussian initial condition.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multidimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quasistationary solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">asymptotic solutions</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trifonov, A. Yu.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shapovalov, A. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Russian physics journal</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">58(2015), 7 vom: Nov., Seite 952-958</subfield><subfield code="w">(DE-627)131169718</subfield><subfield code="w">(DE-600)1138228-4</subfield><subfield code="w">(DE-576)033029253</subfield><subfield code="x">1064-8887</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:7</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:952-958</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11182-015-0594-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">2015</subfield><subfield code="e">7</subfield><subfield code="c">11</subfield><subfield code="h">952-958</subfield></datafield></record></collection>
|
score |
7.401127 |