Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity
The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the...
Ausführliche Beschreibung
Autor*in: |
Levchenko, E. A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Russian physics journal - Springer US, 1992, 60(2017), 2 vom: 31. Mai, Seite 284-291 |
---|---|
Übergeordnetes Werk: |
volume:60 ; year:2017 ; number:2 ; day:31 ; month:05 ; pages:284-291 |
Links: |
---|
DOI / URN: |
10.1007/s11182-017-1073-z |
---|
Katalog-ID: |
OLC203308857X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC203308857X | ||
003 | DE-627 | ||
005 | 20230504040055.0 | ||
007 | tu | ||
008 | 200819s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11182-017-1073-z |2 doi | |
035 | |a (DE-627)OLC203308857X | ||
035 | |a (DE-He213)s11182-017-1073-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 370 |q VZ |
100 | 1 | |a Levchenko, E. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2017 | ||
520 | |a The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered. | ||
650 | 4 | |a nonlinear Fokker–Planck–Kolmogorov equation | |
650 | 4 | |a consistent system | |
650 | 4 | |a Lie symmetries | |
650 | 4 | |a invariant-group solution | |
700 | 1 | |a Trifonov, A. Yu. |4 aut | |
700 | 1 | |a Shapovalov, A. V. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Russian physics journal |d Springer US, 1992 |g 60(2017), 2 vom: 31. Mai, Seite 284-291 |w (DE-627)131169718 |w (DE-600)1138228-4 |w (DE-576)033029253 |x 1064-8887 |7 nnns |
773 | 1 | 8 | |g volume:60 |g year:2017 |g number:2 |g day:31 |g month:05 |g pages:284-291 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11182-017-1073-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 60 |j 2017 |e 2 |b 31 |c 05 |h 284-291 |
author_variant |
e a l ea eal a y t ay ayt a v s av avs |
---|---|
matchkey_str |
article:10648887:2017----::ymtisfhoeiesoafkepackloooeutowtaol |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s11182-017-1073-z doi (DE-627)OLC203308857X (DE-He213)s11182-017-1073-z-p DE-627 ger DE-627 rakwb eng 530 370 VZ Levchenko, E. A. verfasserin aut Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered. nonlinear Fokker–Planck–Kolmogorov equation consistent system Lie symmetries invariant-group solution Trifonov, A. Yu. aut Shapovalov, A. V. aut Enthalten in Russian physics journal Springer US, 1992 60(2017), 2 vom: 31. Mai, Seite 284-291 (DE-627)131169718 (DE-600)1138228-4 (DE-576)033029253 1064-8887 nnns volume:60 year:2017 number:2 day:31 month:05 pages:284-291 https://doi.org/10.1007/s11182-017-1073-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 60 2017 2 31 05 284-291 |
spelling |
10.1007/s11182-017-1073-z doi (DE-627)OLC203308857X (DE-He213)s11182-017-1073-z-p DE-627 ger DE-627 rakwb eng 530 370 VZ Levchenko, E. A. verfasserin aut Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered. nonlinear Fokker–Planck–Kolmogorov equation consistent system Lie symmetries invariant-group solution Trifonov, A. Yu. aut Shapovalov, A. V. aut Enthalten in Russian physics journal Springer US, 1992 60(2017), 2 vom: 31. Mai, Seite 284-291 (DE-627)131169718 (DE-600)1138228-4 (DE-576)033029253 1064-8887 nnns volume:60 year:2017 number:2 day:31 month:05 pages:284-291 https://doi.org/10.1007/s11182-017-1073-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 60 2017 2 31 05 284-291 |
allfields_unstemmed |
10.1007/s11182-017-1073-z doi (DE-627)OLC203308857X (DE-He213)s11182-017-1073-z-p DE-627 ger DE-627 rakwb eng 530 370 VZ Levchenko, E. A. verfasserin aut Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered. nonlinear Fokker–Planck–Kolmogorov equation consistent system Lie symmetries invariant-group solution Trifonov, A. Yu. aut Shapovalov, A. V. aut Enthalten in Russian physics journal Springer US, 1992 60(2017), 2 vom: 31. Mai, Seite 284-291 (DE-627)131169718 (DE-600)1138228-4 (DE-576)033029253 1064-8887 nnns volume:60 year:2017 number:2 day:31 month:05 pages:284-291 https://doi.org/10.1007/s11182-017-1073-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 60 2017 2 31 05 284-291 |
allfieldsGer |
10.1007/s11182-017-1073-z doi (DE-627)OLC203308857X (DE-He213)s11182-017-1073-z-p DE-627 ger DE-627 rakwb eng 530 370 VZ Levchenko, E. A. verfasserin aut Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered. nonlinear Fokker–Planck–Kolmogorov equation consistent system Lie symmetries invariant-group solution Trifonov, A. Yu. aut Shapovalov, A. V. aut Enthalten in Russian physics journal Springer US, 1992 60(2017), 2 vom: 31. Mai, Seite 284-291 (DE-627)131169718 (DE-600)1138228-4 (DE-576)033029253 1064-8887 nnns volume:60 year:2017 number:2 day:31 month:05 pages:284-291 https://doi.org/10.1007/s11182-017-1073-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 60 2017 2 31 05 284-291 |
allfieldsSound |
10.1007/s11182-017-1073-z doi (DE-627)OLC203308857X (DE-He213)s11182-017-1073-z-p DE-627 ger DE-627 rakwb eng 530 370 VZ Levchenko, E. A. verfasserin aut Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered. nonlinear Fokker–Planck–Kolmogorov equation consistent system Lie symmetries invariant-group solution Trifonov, A. Yu. aut Shapovalov, A. V. aut Enthalten in Russian physics journal Springer US, 1992 60(2017), 2 vom: 31. Mai, Seite 284-291 (DE-627)131169718 (DE-600)1138228-4 (DE-576)033029253 1064-8887 nnns volume:60 year:2017 number:2 day:31 month:05 pages:284-291 https://doi.org/10.1007/s11182-017-1073-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 60 2017 2 31 05 284-291 |
language |
English |
source |
Enthalten in Russian physics journal 60(2017), 2 vom: 31. Mai, Seite 284-291 volume:60 year:2017 number:2 day:31 month:05 pages:284-291 |
sourceStr |
Enthalten in Russian physics journal 60(2017), 2 vom: 31. Mai, Seite 284-291 volume:60 year:2017 number:2 day:31 month:05 pages:284-291 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
nonlinear Fokker–Planck–Kolmogorov equation consistent system Lie symmetries invariant-group solution |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Russian physics journal |
authorswithroles_txt_mv |
Levchenko, E. A. @@aut@@ Trifonov, A. Yu. @@aut@@ Shapovalov, A. V. @@aut@@ |
publishDateDaySort_date |
2017-05-31T00:00:00Z |
hierarchy_top_id |
131169718 |
dewey-sort |
3530 |
id |
OLC203308857X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC203308857X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504040055.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11182-017-1073-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC203308857X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11182-017-1073-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">370</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Levchenko, E. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear Fokker–Planck–Kolmogorov equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">consistent system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie symmetries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">invariant-group solution</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trifonov, A. Yu.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shapovalov, A. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Russian physics journal</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">60(2017), 2 vom: 31. Mai, Seite 284-291</subfield><subfield code="w">(DE-627)131169718</subfield><subfield code="w">(DE-600)1138228-4</subfield><subfield code="w">(DE-576)033029253</subfield><subfield code="x">1064-8887</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:60</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">day:31</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:284-291</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11182-017-1073-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">60</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="b">31</subfield><subfield code="c">05</subfield><subfield code="h">284-291</subfield></datafield></record></collection>
|
author |
Levchenko, E. A. |
spellingShingle |
Levchenko, E. A. ddc 530 misc nonlinear Fokker–Planck–Kolmogorov equation misc consistent system misc Lie symmetries misc invariant-group solution Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity |
authorStr |
Levchenko, E. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131169718 |
format |
Article |
dewey-ones |
530 - Physics 370 - Education |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1064-8887 |
topic_title |
530 370 VZ Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity nonlinear Fokker–Planck–Kolmogorov equation consistent system Lie symmetries invariant-group solution |
topic |
ddc 530 misc nonlinear Fokker–Planck–Kolmogorov equation misc consistent system misc Lie symmetries misc invariant-group solution |
topic_unstemmed |
ddc 530 misc nonlinear Fokker–Planck–Kolmogorov equation misc consistent system misc Lie symmetries misc invariant-group solution |
topic_browse |
ddc 530 misc nonlinear Fokker–Planck–Kolmogorov equation misc consistent system misc Lie symmetries misc invariant-group solution |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Russian physics journal |
hierarchy_parent_id |
131169718 |
dewey-tens |
530 - Physics 370 - Education |
hierarchy_top_title |
Russian physics journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131169718 (DE-600)1138228-4 (DE-576)033029253 |
title |
Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity |
ctrlnum |
(DE-627)OLC203308857X (DE-He213)s11182-017-1073-z-p |
title_full |
Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity |
author_sort |
Levchenko, E. A. |
journal |
Russian physics journal |
journalStr |
Russian physics journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
284 |
author_browse |
Levchenko, E. A. Trifonov, A. Yu. Shapovalov, A. V. |
container_volume |
60 |
class |
530 370 VZ |
format_se |
Aufsätze |
author-letter |
Levchenko, E. A. |
doi_str_mv |
10.1007/s11182-017-1073-z |
dewey-full |
530 370 |
title_sort |
symmetries of the one-dimensional fokker–planck–kolmogorov equation with a nonlocal quadratic nonlinearity |
title_auth |
Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity |
abstract |
The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered. © Springer Science+Business Media New York 2017 |
abstractGer |
The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered. © Springer Science+Business Media New York 2017 |
abstract_unstemmed |
The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered. © Springer Science+Business Media New York 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
2 |
title_short |
Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity |
url |
https://doi.org/10.1007/s11182-017-1073-z |
remote_bool |
false |
author2 |
Trifonov, A. Yu Shapovalov, A. V. |
author2Str |
Trifonov, A. Yu Shapovalov, A. V. |
ppnlink |
131169718 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11182-017-1073-z |
up_date |
2024-07-03T15:39:06.279Z |
_version_ |
1803572893489037312 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC203308857X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504040055.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11182-017-1073-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC203308857X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11182-017-1073-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">370</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Levchenko, E. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear Fokker–Planck–Kolmogorov equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">consistent system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie symmetries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">invariant-group solution</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trifonov, A. Yu.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shapovalov, A. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Russian physics journal</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">60(2017), 2 vom: 31. Mai, Seite 284-291</subfield><subfield code="w">(DE-627)131169718</subfield><subfield code="w">(DE-600)1138228-4</subfield><subfield code="w">(DE-576)033029253</subfield><subfield code="x">1064-8887</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:60</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">day:31</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:284-291</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11182-017-1073-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">60</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="b">31</subfield><subfield code="c">05</subfield><subfield code="h">284-291</subfield></datafield></record></collection>
|
score |
7.4013624 |