A 3-dimensional analysis for evaluating technology emergence indicators
Abstract Technology emergence has become a hot topic in R&D policy and management communities. Various methods of measuring technology emergence have been developed. However, there is little literature discussing how to evaluate the results identified by different methods. This research sharpens...
Ausführliche Beschreibung
Autor*in: |
Liu, Xiaoyu [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
Technology emergence indicators |
---|
Anmerkung: |
© Akadémiai Kiadó, Budapest, Hungary 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Scientometrics - Springer International Publishing, 1978, 124(2020), 1 vom: 04. Apr., Seite 27-55 |
---|---|
Übergeordnetes Werk: |
volume:124 ; year:2020 ; number:1 ; day:04 ; month:04 ; pages:27-55 |
Links: |
---|
DOI / URN: |
10.1007/s11192-020-03432-6 |
---|
Katalog-ID: |
OLC2033225976 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2033225976 | ||
003 | DE-627 | ||
005 | 20230504153715.0 | ||
007 | tu | ||
008 | 200819s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11192-020-03432-6 |2 doi | |
035 | |a (DE-627)OLC2033225976 | ||
035 | |a (DE-He213)s11192-020-03432-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 050 |a 370 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Liu, Xiaoyu |e verfasserin |0 (orcid)0000-0003-2509-8457 |4 aut | |
245 | 1 | 0 | |a A 3-dimensional analysis for evaluating technology emergence indicators |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Akadémiai Kiadó, Budapest, Hungary 2020 | ||
520 | |a Abstract Technology emergence has become a hot topic in R&D policy and management communities. Various methods of measuring technology emergence have been developed. However, there is little literature discussing how to evaluate the results identified by different methods. This research sharpens a promising Technology Emergence Indicator (TEI) set by assessing alternative formulations on three distinct datasets: Dye-Sensitized Solar Cells, Non-Linear Programming, and Nano-Enabled Drug Delivery. Our TEIs derive from a conceptual foundation including three attributes of emergence: persistence, community, and growth that we systematically address through a 3-dimensional evaluation framework. Comparing TEI behavior through sensitivity analyses shows good robustness for the measures. The TEI serve to distinguish emerging R&D topics in the field under study. They can further be used to identify highly active players publishing on those topics. Importantly, results show that identified emerging terms and topics persist to a strong degree; thus, they serve to predict highly active R&D foci within the technical domain under study. | ||
650 | 4 | |a Technology emergence indicators | |
650 | 4 | |a Technology forecasting | |
650 | 4 | |a Emerging technologies | |
650 | 4 | |a Technology emergence assessment | |
650 | 4 | |a R&D emergence | |
650 | 4 | |a Predictive indicators | |
700 | 1 | |a Porter, Alan L. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Scientometrics |d Springer International Publishing, 1978 |g 124(2020), 1 vom: 04. Apr., Seite 27-55 |w (DE-627)13005352X |w (DE-600)435652-4 |w (DE-576)015591697 |x 0138-9130 |7 nnns |
773 | 1 | 8 | |g volume:124 |g year:2020 |g number:1 |g day:04 |g month:04 |g pages:27-55 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11192-020-03432-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-BUB | ||
912 | |a SSG-OLC-HSW | ||
912 | |a SSG-OPC-BBI | ||
912 | |a GBV_ILN_4012 | ||
951 | |a AR | ||
952 | |d 124 |j 2020 |e 1 |b 04 |c 04 |h 27-55 |
author_variant |
x l xl a l p al alp |
---|---|
matchkey_str |
article:01389130:2020----::3iesoaaayifrvlaigehooy |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s11192-020-03432-6 doi (DE-627)OLC2033225976 (DE-He213)s11192-020-03432-6-p DE-627 ger DE-627 rakwb eng 050 370 VZ 11 ssgn Liu, Xiaoyu verfasserin (orcid)0000-0003-2509-8457 aut A 3-dimensional analysis for evaluating technology emergence indicators 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2020 Abstract Technology emergence has become a hot topic in R&D policy and management communities. Various methods of measuring technology emergence have been developed. However, there is little literature discussing how to evaluate the results identified by different methods. This research sharpens a promising Technology Emergence Indicator (TEI) set by assessing alternative formulations on three distinct datasets: Dye-Sensitized Solar Cells, Non-Linear Programming, and Nano-Enabled Drug Delivery. Our TEIs derive from a conceptual foundation including three attributes of emergence: persistence, community, and growth that we systematically address through a 3-dimensional evaluation framework. Comparing TEI behavior through sensitivity analyses shows good robustness for the measures. The TEI serve to distinguish emerging R&D topics in the field under study. They can further be used to identify highly active players publishing on those topics. Importantly, results show that identified emerging terms and topics persist to a strong degree; thus, they serve to predict highly active R&D foci within the technical domain under study. Technology emergence indicators Technology forecasting Emerging technologies Technology emergence assessment R&D emergence Predictive indicators Porter, Alan L. aut Enthalten in Scientometrics Springer International Publishing, 1978 124(2020), 1 vom: 04. Apr., Seite 27-55 (DE-627)13005352X (DE-600)435652-4 (DE-576)015591697 0138-9130 nnns volume:124 year:2020 number:1 day:04 month:04 pages:27-55 https://doi.org/10.1007/s11192-020-03432-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-BUB SSG-OLC-HSW SSG-OPC-BBI GBV_ILN_4012 AR 124 2020 1 04 04 27-55 |
spelling |
10.1007/s11192-020-03432-6 doi (DE-627)OLC2033225976 (DE-He213)s11192-020-03432-6-p DE-627 ger DE-627 rakwb eng 050 370 VZ 11 ssgn Liu, Xiaoyu verfasserin (orcid)0000-0003-2509-8457 aut A 3-dimensional analysis for evaluating technology emergence indicators 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2020 Abstract Technology emergence has become a hot topic in R&D policy and management communities. Various methods of measuring technology emergence have been developed. However, there is little literature discussing how to evaluate the results identified by different methods. This research sharpens a promising Technology Emergence Indicator (TEI) set by assessing alternative formulations on three distinct datasets: Dye-Sensitized Solar Cells, Non-Linear Programming, and Nano-Enabled Drug Delivery. Our TEIs derive from a conceptual foundation including three attributes of emergence: persistence, community, and growth that we systematically address through a 3-dimensional evaluation framework. Comparing TEI behavior through sensitivity analyses shows good robustness for the measures. The TEI serve to distinguish emerging R&D topics in the field under study. They can further be used to identify highly active players publishing on those topics. Importantly, results show that identified emerging terms and topics persist to a strong degree; thus, they serve to predict highly active R&D foci within the technical domain under study. Technology emergence indicators Technology forecasting Emerging technologies Technology emergence assessment R&D emergence Predictive indicators Porter, Alan L. aut Enthalten in Scientometrics Springer International Publishing, 1978 124(2020), 1 vom: 04. Apr., Seite 27-55 (DE-627)13005352X (DE-600)435652-4 (DE-576)015591697 0138-9130 nnns volume:124 year:2020 number:1 day:04 month:04 pages:27-55 https://doi.org/10.1007/s11192-020-03432-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-BUB SSG-OLC-HSW SSG-OPC-BBI GBV_ILN_4012 AR 124 2020 1 04 04 27-55 |
allfields_unstemmed |
10.1007/s11192-020-03432-6 doi (DE-627)OLC2033225976 (DE-He213)s11192-020-03432-6-p DE-627 ger DE-627 rakwb eng 050 370 VZ 11 ssgn Liu, Xiaoyu verfasserin (orcid)0000-0003-2509-8457 aut A 3-dimensional analysis for evaluating technology emergence indicators 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2020 Abstract Technology emergence has become a hot topic in R&D policy and management communities. Various methods of measuring technology emergence have been developed. However, there is little literature discussing how to evaluate the results identified by different methods. This research sharpens a promising Technology Emergence Indicator (TEI) set by assessing alternative formulations on three distinct datasets: Dye-Sensitized Solar Cells, Non-Linear Programming, and Nano-Enabled Drug Delivery. Our TEIs derive from a conceptual foundation including three attributes of emergence: persistence, community, and growth that we systematically address through a 3-dimensional evaluation framework. Comparing TEI behavior through sensitivity analyses shows good robustness for the measures. The TEI serve to distinguish emerging R&D topics in the field under study. They can further be used to identify highly active players publishing on those topics. Importantly, results show that identified emerging terms and topics persist to a strong degree; thus, they serve to predict highly active R&D foci within the technical domain under study. Technology emergence indicators Technology forecasting Emerging technologies Technology emergence assessment R&D emergence Predictive indicators Porter, Alan L. aut Enthalten in Scientometrics Springer International Publishing, 1978 124(2020), 1 vom: 04. Apr., Seite 27-55 (DE-627)13005352X (DE-600)435652-4 (DE-576)015591697 0138-9130 nnns volume:124 year:2020 number:1 day:04 month:04 pages:27-55 https://doi.org/10.1007/s11192-020-03432-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-BUB SSG-OLC-HSW SSG-OPC-BBI GBV_ILN_4012 AR 124 2020 1 04 04 27-55 |
allfieldsGer |
10.1007/s11192-020-03432-6 doi (DE-627)OLC2033225976 (DE-He213)s11192-020-03432-6-p DE-627 ger DE-627 rakwb eng 050 370 VZ 11 ssgn Liu, Xiaoyu verfasserin (orcid)0000-0003-2509-8457 aut A 3-dimensional analysis for evaluating technology emergence indicators 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2020 Abstract Technology emergence has become a hot topic in R&D policy and management communities. Various methods of measuring technology emergence have been developed. However, there is little literature discussing how to evaluate the results identified by different methods. This research sharpens a promising Technology Emergence Indicator (TEI) set by assessing alternative formulations on three distinct datasets: Dye-Sensitized Solar Cells, Non-Linear Programming, and Nano-Enabled Drug Delivery. Our TEIs derive from a conceptual foundation including three attributes of emergence: persistence, community, and growth that we systematically address through a 3-dimensional evaluation framework. Comparing TEI behavior through sensitivity analyses shows good robustness for the measures. The TEI serve to distinguish emerging R&D topics in the field under study. They can further be used to identify highly active players publishing on those topics. Importantly, results show that identified emerging terms and topics persist to a strong degree; thus, they serve to predict highly active R&D foci within the technical domain under study. Technology emergence indicators Technology forecasting Emerging technologies Technology emergence assessment R&D emergence Predictive indicators Porter, Alan L. aut Enthalten in Scientometrics Springer International Publishing, 1978 124(2020), 1 vom: 04. Apr., Seite 27-55 (DE-627)13005352X (DE-600)435652-4 (DE-576)015591697 0138-9130 nnns volume:124 year:2020 number:1 day:04 month:04 pages:27-55 https://doi.org/10.1007/s11192-020-03432-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-BUB SSG-OLC-HSW SSG-OPC-BBI GBV_ILN_4012 AR 124 2020 1 04 04 27-55 |
allfieldsSound |
10.1007/s11192-020-03432-6 doi (DE-627)OLC2033225976 (DE-He213)s11192-020-03432-6-p DE-627 ger DE-627 rakwb eng 050 370 VZ 11 ssgn Liu, Xiaoyu verfasserin (orcid)0000-0003-2509-8457 aut A 3-dimensional analysis for evaluating technology emergence indicators 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2020 Abstract Technology emergence has become a hot topic in R&D policy and management communities. Various methods of measuring technology emergence have been developed. However, there is little literature discussing how to evaluate the results identified by different methods. This research sharpens a promising Technology Emergence Indicator (TEI) set by assessing alternative formulations on three distinct datasets: Dye-Sensitized Solar Cells, Non-Linear Programming, and Nano-Enabled Drug Delivery. Our TEIs derive from a conceptual foundation including three attributes of emergence: persistence, community, and growth that we systematically address through a 3-dimensional evaluation framework. Comparing TEI behavior through sensitivity analyses shows good robustness for the measures. The TEI serve to distinguish emerging R&D topics in the field under study. They can further be used to identify highly active players publishing on those topics. Importantly, results show that identified emerging terms and topics persist to a strong degree; thus, they serve to predict highly active R&D foci within the technical domain under study. Technology emergence indicators Technology forecasting Emerging technologies Technology emergence assessment R&D emergence Predictive indicators Porter, Alan L. aut Enthalten in Scientometrics Springer International Publishing, 1978 124(2020), 1 vom: 04. Apr., Seite 27-55 (DE-627)13005352X (DE-600)435652-4 (DE-576)015591697 0138-9130 nnns volume:124 year:2020 number:1 day:04 month:04 pages:27-55 https://doi.org/10.1007/s11192-020-03432-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-BUB SSG-OLC-HSW SSG-OPC-BBI GBV_ILN_4012 AR 124 2020 1 04 04 27-55 |
language |
English |
source |
Enthalten in Scientometrics 124(2020), 1 vom: 04. Apr., Seite 27-55 volume:124 year:2020 number:1 day:04 month:04 pages:27-55 |
sourceStr |
Enthalten in Scientometrics 124(2020), 1 vom: 04. Apr., Seite 27-55 volume:124 year:2020 number:1 day:04 month:04 pages:27-55 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Technology emergence indicators Technology forecasting Emerging technologies Technology emergence assessment R&D emergence Predictive indicators |
dewey-raw |
050 |
isfreeaccess_bool |
false |
container_title |
Scientometrics |
authorswithroles_txt_mv |
Liu, Xiaoyu @@aut@@ Porter, Alan L. @@aut@@ |
publishDateDaySort_date |
2020-04-04T00:00:00Z |
hierarchy_top_id |
13005352X |
dewey-sort |
250 |
id |
OLC2033225976 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033225976</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504153715.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11192-020-03432-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033225976</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11192-020-03432-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">050</subfield><subfield code="a">370</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Xiaoyu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2509-8457</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A 3-dimensional analysis for evaluating technology emergence indicators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó, Budapest, Hungary 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Technology emergence has become a hot topic in R&D policy and management communities. Various methods of measuring technology emergence have been developed. However, there is little literature discussing how to evaluate the results identified by different methods. This research sharpens a promising Technology Emergence Indicator (TEI) set by assessing alternative formulations on three distinct datasets: Dye-Sensitized Solar Cells, Non-Linear Programming, and Nano-Enabled Drug Delivery. Our TEIs derive from a conceptual foundation including three attributes of emergence: persistence, community, and growth that we systematically address through a 3-dimensional evaluation framework. Comparing TEI behavior through sensitivity analyses shows good robustness for the measures. The TEI serve to distinguish emerging R&D topics in the field under study. They can further be used to identify highly active players publishing on those topics. Importantly, results show that identified emerging terms and topics persist to a strong degree; thus, they serve to predict highly active R&D foci within the technical domain under study.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technology emergence indicators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technology forecasting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Emerging technologies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technology emergence assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R&D emergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predictive indicators</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Porter, Alan L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Scientometrics</subfield><subfield code="d">Springer International Publishing, 1978</subfield><subfield code="g">124(2020), 1 vom: 04. Apr., Seite 27-55</subfield><subfield code="w">(DE-627)13005352X</subfield><subfield code="w">(DE-600)435652-4</subfield><subfield code="w">(DE-576)015591697</subfield><subfield code="x">0138-9130</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:124</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:27-55</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11192-020-03432-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-HSW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">124</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">04</subfield><subfield code="h">27-55</subfield></datafield></record></collection>
|
author |
Liu, Xiaoyu |
spellingShingle |
Liu, Xiaoyu ddc 050 ssgn 11 misc Technology emergence indicators misc Technology forecasting misc Emerging technologies misc Technology emergence assessment misc R&D emergence misc Predictive indicators A 3-dimensional analysis for evaluating technology emergence indicators |
authorStr |
Liu, Xiaoyu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)13005352X |
format |
Article |
dewey-ones |
050 - General serial publications 370 - Education |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0138-9130 |
topic_title |
050 370 VZ 11 ssgn A 3-dimensional analysis for evaluating technology emergence indicators Technology emergence indicators Technology forecasting Emerging technologies Technology emergence assessment R&D emergence Predictive indicators |
topic |
ddc 050 ssgn 11 misc Technology emergence indicators misc Technology forecasting misc Emerging technologies misc Technology emergence assessment misc R&D emergence misc Predictive indicators |
topic_unstemmed |
ddc 050 ssgn 11 misc Technology emergence indicators misc Technology forecasting misc Emerging technologies misc Technology emergence assessment misc R&D emergence misc Predictive indicators |
topic_browse |
ddc 050 ssgn 11 misc Technology emergence indicators misc Technology forecasting misc Emerging technologies misc Technology emergence assessment misc R&D emergence misc Predictive indicators |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Scientometrics |
hierarchy_parent_id |
13005352X |
dewey-tens |
050 - Magazines, journals & serials 370 - Education |
hierarchy_top_title |
Scientometrics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)13005352X (DE-600)435652-4 (DE-576)015591697 |
title |
A 3-dimensional analysis for evaluating technology emergence indicators |
ctrlnum |
(DE-627)OLC2033225976 (DE-He213)s11192-020-03432-6-p |
title_full |
A 3-dimensional analysis for evaluating technology emergence indicators |
author_sort |
Liu, Xiaoyu |
journal |
Scientometrics |
journalStr |
Scientometrics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
27 |
author_browse |
Liu, Xiaoyu Porter, Alan L. |
container_volume |
124 |
class |
050 370 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Liu, Xiaoyu |
doi_str_mv |
10.1007/s11192-020-03432-6 |
normlink |
(ORCID)0000-0003-2509-8457 |
normlink_prefix_str_mv |
(orcid)0000-0003-2509-8457 |
dewey-full |
050 370 |
title_sort |
a 3-dimensional analysis for evaluating technology emergence indicators |
title_auth |
A 3-dimensional analysis for evaluating technology emergence indicators |
abstract |
Abstract Technology emergence has become a hot topic in R&D policy and management communities. Various methods of measuring technology emergence have been developed. However, there is little literature discussing how to evaluate the results identified by different methods. This research sharpens a promising Technology Emergence Indicator (TEI) set by assessing alternative formulations on three distinct datasets: Dye-Sensitized Solar Cells, Non-Linear Programming, and Nano-Enabled Drug Delivery. Our TEIs derive from a conceptual foundation including three attributes of emergence: persistence, community, and growth that we systematically address through a 3-dimensional evaluation framework. Comparing TEI behavior through sensitivity analyses shows good robustness for the measures. The TEI serve to distinguish emerging R&D topics in the field under study. They can further be used to identify highly active players publishing on those topics. Importantly, results show that identified emerging terms and topics persist to a strong degree; thus, they serve to predict highly active R&D foci within the technical domain under study. © Akadémiai Kiadó, Budapest, Hungary 2020 |
abstractGer |
Abstract Technology emergence has become a hot topic in R&D policy and management communities. Various methods of measuring technology emergence have been developed. However, there is little literature discussing how to evaluate the results identified by different methods. This research sharpens a promising Technology Emergence Indicator (TEI) set by assessing alternative formulations on three distinct datasets: Dye-Sensitized Solar Cells, Non-Linear Programming, and Nano-Enabled Drug Delivery. Our TEIs derive from a conceptual foundation including three attributes of emergence: persistence, community, and growth that we systematically address through a 3-dimensional evaluation framework. Comparing TEI behavior through sensitivity analyses shows good robustness for the measures. The TEI serve to distinguish emerging R&D topics in the field under study. They can further be used to identify highly active players publishing on those topics. Importantly, results show that identified emerging terms and topics persist to a strong degree; thus, they serve to predict highly active R&D foci within the technical domain under study. © Akadémiai Kiadó, Budapest, Hungary 2020 |
abstract_unstemmed |
Abstract Technology emergence has become a hot topic in R&D policy and management communities. Various methods of measuring technology emergence have been developed. However, there is little literature discussing how to evaluate the results identified by different methods. This research sharpens a promising Technology Emergence Indicator (TEI) set by assessing alternative formulations on three distinct datasets: Dye-Sensitized Solar Cells, Non-Linear Programming, and Nano-Enabled Drug Delivery. Our TEIs derive from a conceptual foundation including three attributes of emergence: persistence, community, and growth that we systematically address through a 3-dimensional evaluation framework. Comparing TEI behavior through sensitivity analyses shows good robustness for the measures. The TEI serve to distinguish emerging R&D topics in the field under study. They can further be used to identify highly active players publishing on those topics. Importantly, results show that identified emerging terms and topics persist to a strong degree; thus, they serve to predict highly active R&D foci within the technical domain under study. © Akadémiai Kiadó, Budapest, Hungary 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-BUB SSG-OLC-HSW SSG-OPC-BBI GBV_ILN_4012 |
container_issue |
1 |
title_short |
A 3-dimensional analysis for evaluating technology emergence indicators |
url |
https://doi.org/10.1007/s11192-020-03432-6 |
remote_bool |
false |
author2 |
Porter, Alan L. |
author2Str |
Porter, Alan L. |
ppnlink |
13005352X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11192-020-03432-6 |
up_date |
2024-07-03T16:13:23.963Z |
_version_ |
1803575051122900992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033225976</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504153715.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11192-020-03432-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033225976</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11192-020-03432-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">050</subfield><subfield code="a">370</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Xiaoyu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2509-8457</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A 3-dimensional analysis for evaluating technology emergence indicators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó, Budapest, Hungary 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Technology emergence has become a hot topic in R&D policy and management communities. Various methods of measuring technology emergence have been developed. However, there is little literature discussing how to evaluate the results identified by different methods. This research sharpens a promising Technology Emergence Indicator (TEI) set by assessing alternative formulations on three distinct datasets: Dye-Sensitized Solar Cells, Non-Linear Programming, and Nano-Enabled Drug Delivery. Our TEIs derive from a conceptual foundation including three attributes of emergence: persistence, community, and growth that we systematically address through a 3-dimensional evaluation framework. Comparing TEI behavior through sensitivity analyses shows good robustness for the measures. The TEI serve to distinguish emerging R&D topics in the field under study. They can further be used to identify highly active players publishing on those topics. Importantly, results show that identified emerging terms and topics persist to a strong degree; thus, they serve to predict highly active R&D foci within the technical domain under study.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technology emergence indicators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technology forecasting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Emerging technologies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technology emergence assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R&D emergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predictive indicators</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Porter, Alan L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Scientometrics</subfield><subfield code="d">Springer International Publishing, 1978</subfield><subfield code="g">124(2020), 1 vom: 04. Apr., Seite 27-55</subfield><subfield code="w">(DE-627)13005352X</subfield><subfield code="w">(DE-600)435652-4</subfield><subfield code="w">(DE-576)015591697</subfield><subfield code="x">0138-9130</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:124</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:27-55</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11192-020-03432-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-HSW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">124</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">04</subfield><subfield code="h">27-55</subfield></datafield></record></collection>
|
score |
7.401928 |