Automorphisms of Coxeter groups of type Kn
Abstract A Coxeter system (W, S) is said to be of type Kn if the associated Coxeter graph $ Γ_{S} $ is complete on n vertices and has only odd edge labels. If W satisfies either of: (1) n = 3; (2) W is rigid; then the automorphism group of W is generated by the inner automorphisms of W and any autom...
Ausführliche Beschreibung
Autor*in: |
Ryan, J. A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, Inc. 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Siberian mathematical journal - Kluwer Academic Publishers-Consultants Bureau, 1966, 48(2007), 2 vom: März, Seite 311-316 |
---|---|
Übergeordnetes Werk: |
volume:48 ; year:2007 ; number:2 ; month:03 ; pages:311-316 |
Links: |
---|
DOI / URN: |
10.1007/s11202-007-0032-2 |
---|
Katalog-ID: |
OLC2033380688 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2033380688 | ||
003 | DE-627 | ||
005 | 20230504044050.0 | ||
007 | tu | ||
008 | 200819s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11202-007-0032-2 |2 doi | |
035 | |a (DE-627)OLC2033380688 | ||
035 | |a (DE-He213)s11202-007-0032-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Ryan, J. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Automorphisms of Coxeter groups of type Kn |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, Inc. 2007 | ||
520 | |a Abstract A Coxeter system (W, S) is said to be of type Kn if the associated Coxeter graph $ Γ_{S} $ is complete on n vertices and has only odd edge labels. If W satisfies either of: (1) n = 3; (2) W is rigid; then the automorphism group of W is generated by the inner automorphisms of W and any automorphisms induced by $ Γ_{S} $. Indeed, Aut(W) is the semidirect product of Inn(W) and the group of diagram automorphisms, and furthermore W is strongly rigid. We also show that if W is a Coxeter group of type Kn then W has exactly one conjugacy class of involutions and hence Aut(W) = Spec(W). | ||
650 | 4 | |a Coxeter group | |
650 | 4 | |a graph | |
650 | 4 | |a automorphism | |
773 | 0 | 8 | |i Enthalten in |t Siberian mathematical journal |d Kluwer Academic Publishers-Consultants Bureau, 1966 |g 48(2007), 2 vom: März, Seite 311-316 |w (DE-627)129553573 |w (DE-600)220062-4 |w (DE-576)015009602 |x 0037-4466 |7 nnns |
773 | 1 | 8 | |g volume:48 |g year:2007 |g number:2 |g month:03 |g pages:311-316 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11202-007-0032-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
951 | |a AR | ||
952 | |d 48 |j 2007 |e 2 |c 03 |h 311-316 |
author_variant |
j a r ja jar |
---|---|
matchkey_str |
article:00374466:2007----::uoopimocxtrru |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s11202-007-0032-2 doi (DE-627)OLC2033380688 (DE-He213)s11202-007-0032-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Ryan, J. A. verfasserin aut Automorphisms of Coxeter groups of type Kn 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2007 Abstract A Coxeter system (W, S) is said to be of type Kn if the associated Coxeter graph $ Γ_{S} $ is complete on n vertices and has only odd edge labels. If W satisfies either of: (1) n = 3; (2) W is rigid; then the automorphism group of W is generated by the inner automorphisms of W and any automorphisms induced by $ Γ_{S} $. Indeed, Aut(W) is the semidirect product of Inn(W) and the group of diagram automorphisms, and furthermore W is strongly rigid. We also show that if W is a Coxeter group of type Kn then W has exactly one conjugacy class of involutions and hence Aut(W) = Spec(W). Coxeter group graph automorphism Enthalten in Siberian mathematical journal Kluwer Academic Publishers-Consultants Bureau, 1966 48(2007), 2 vom: März, Seite 311-316 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:48 year:2007 number:2 month:03 pages:311-316 https://doi.org/10.1007/s11202-007-0032-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 AR 48 2007 2 03 311-316 |
spelling |
10.1007/s11202-007-0032-2 doi (DE-627)OLC2033380688 (DE-He213)s11202-007-0032-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Ryan, J. A. verfasserin aut Automorphisms of Coxeter groups of type Kn 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2007 Abstract A Coxeter system (W, S) is said to be of type Kn if the associated Coxeter graph $ Γ_{S} $ is complete on n vertices and has only odd edge labels. If W satisfies either of: (1) n = 3; (2) W is rigid; then the automorphism group of W is generated by the inner automorphisms of W and any automorphisms induced by $ Γ_{S} $. Indeed, Aut(W) is the semidirect product of Inn(W) and the group of diagram automorphisms, and furthermore W is strongly rigid. We also show that if W is a Coxeter group of type Kn then W has exactly one conjugacy class of involutions and hence Aut(W) = Spec(W). Coxeter group graph automorphism Enthalten in Siberian mathematical journal Kluwer Academic Publishers-Consultants Bureau, 1966 48(2007), 2 vom: März, Seite 311-316 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:48 year:2007 number:2 month:03 pages:311-316 https://doi.org/10.1007/s11202-007-0032-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 AR 48 2007 2 03 311-316 |
allfields_unstemmed |
10.1007/s11202-007-0032-2 doi (DE-627)OLC2033380688 (DE-He213)s11202-007-0032-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Ryan, J. A. verfasserin aut Automorphisms of Coxeter groups of type Kn 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2007 Abstract A Coxeter system (W, S) is said to be of type Kn if the associated Coxeter graph $ Γ_{S} $ is complete on n vertices and has only odd edge labels. If W satisfies either of: (1) n = 3; (2) W is rigid; then the automorphism group of W is generated by the inner automorphisms of W and any automorphisms induced by $ Γ_{S} $. Indeed, Aut(W) is the semidirect product of Inn(W) and the group of diagram automorphisms, and furthermore W is strongly rigid. We also show that if W is a Coxeter group of type Kn then W has exactly one conjugacy class of involutions and hence Aut(W) = Spec(W). Coxeter group graph automorphism Enthalten in Siberian mathematical journal Kluwer Academic Publishers-Consultants Bureau, 1966 48(2007), 2 vom: März, Seite 311-316 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:48 year:2007 number:2 month:03 pages:311-316 https://doi.org/10.1007/s11202-007-0032-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 AR 48 2007 2 03 311-316 |
allfieldsGer |
10.1007/s11202-007-0032-2 doi (DE-627)OLC2033380688 (DE-He213)s11202-007-0032-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Ryan, J. A. verfasserin aut Automorphisms of Coxeter groups of type Kn 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2007 Abstract A Coxeter system (W, S) is said to be of type Kn if the associated Coxeter graph $ Γ_{S} $ is complete on n vertices and has only odd edge labels. If W satisfies either of: (1) n = 3; (2) W is rigid; then the automorphism group of W is generated by the inner automorphisms of W and any automorphisms induced by $ Γ_{S} $. Indeed, Aut(W) is the semidirect product of Inn(W) and the group of diagram automorphisms, and furthermore W is strongly rigid. We also show that if W is a Coxeter group of type Kn then W has exactly one conjugacy class of involutions and hence Aut(W) = Spec(W). Coxeter group graph automorphism Enthalten in Siberian mathematical journal Kluwer Academic Publishers-Consultants Bureau, 1966 48(2007), 2 vom: März, Seite 311-316 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:48 year:2007 number:2 month:03 pages:311-316 https://doi.org/10.1007/s11202-007-0032-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 AR 48 2007 2 03 311-316 |
allfieldsSound |
10.1007/s11202-007-0032-2 doi (DE-627)OLC2033380688 (DE-He213)s11202-007-0032-2-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Ryan, J. A. verfasserin aut Automorphisms of Coxeter groups of type Kn 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2007 Abstract A Coxeter system (W, S) is said to be of type Kn if the associated Coxeter graph $ Γ_{S} $ is complete on n vertices and has only odd edge labels. If W satisfies either of: (1) n = 3; (2) W is rigid; then the automorphism group of W is generated by the inner automorphisms of W and any automorphisms induced by $ Γ_{S} $. Indeed, Aut(W) is the semidirect product of Inn(W) and the group of diagram automorphisms, and furthermore W is strongly rigid. We also show that if W is a Coxeter group of type Kn then W has exactly one conjugacy class of involutions and hence Aut(W) = Spec(W). Coxeter group graph automorphism Enthalten in Siberian mathematical journal Kluwer Academic Publishers-Consultants Bureau, 1966 48(2007), 2 vom: März, Seite 311-316 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:48 year:2007 number:2 month:03 pages:311-316 https://doi.org/10.1007/s11202-007-0032-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 AR 48 2007 2 03 311-316 |
language |
English |
source |
Enthalten in Siberian mathematical journal 48(2007), 2 vom: März, Seite 311-316 volume:48 year:2007 number:2 month:03 pages:311-316 |
sourceStr |
Enthalten in Siberian mathematical journal 48(2007), 2 vom: März, Seite 311-316 volume:48 year:2007 number:2 month:03 pages:311-316 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Coxeter group graph automorphism |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Siberian mathematical journal |
authorswithroles_txt_mv |
Ryan, J. A. @@aut@@ |
publishDateDaySort_date |
2007-03-01T00:00:00Z |
hierarchy_top_id |
129553573 |
dewey-sort |
3510 |
id |
OLC2033380688 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033380688</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504044050.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11202-007-0032-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033380688</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11202-007-0032-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ryan, J. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automorphisms of Coxeter groups of type Kn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, Inc. 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A Coxeter system (W, S) is said to be of type Kn if the associated Coxeter graph $ Γ_{S} $ is complete on n vertices and has only odd edge labels. If W satisfies either of: (1) n = 3; (2) W is rigid; then the automorphism group of W is generated by the inner automorphisms of W and any automorphisms induced by $ Γ_{S} $. Indeed, Aut(W) is the semidirect product of Inn(W) and the group of diagram automorphisms, and furthermore W is strongly rigid. We also show that if W is a Coxeter group of type Kn then W has exactly one conjugacy class of involutions and hence Aut(W) = Spec(W).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coxeter group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automorphism</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Siberian mathematical journal</subfield><subfield code="d">Kluwer Academic Publishers-Consultants Bureau, 1966</subfield><subfield code="g">48(2007), 2 vom: März, Seite 311-316</subfield><subfield code="w">(DE-627)129553573</subfield><subfield code="w">(DE-600)220062-4</subfield><subfield code="w">(DE-576)015009602</subfield><subfield code="x">0037-4466</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:311-316</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11202-007-0032-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2007</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">311-316</subfield></datafield></record></collection>
|
author |
Ryan, J. A. |
spellingShingle |
Ryan, J. A. ddc 510 ssgn 17,1 misc Coxeter group misc graph misc automorphism Automorphisms of Coxeter groups of type Kn |
authorStr |
Ryan, J. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129553573 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0037-4466 |
topic_title |
510 VZ 17,1 ssgn Automorphisms of Coxeter groups of type Kn Coxeter group graph automorphism |
topic |
ddc 510 ssgn 17,1 misc Coxeter group misc graph misc automorphism |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Coxeter group misc graph misc automorphism |
topic_browse |
ddc 510 ssgn 17,1 misc Coxeter group misc graph misc automorphism |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Siberian mathematical journal |
hierarchy_parent_id |
129553573 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Siberian mathematical journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 |
title |
Automorphisms of Coxeter groups of type Kn |
ctrlnum |
(DE-627)OLC2033380688 (DE-He213)s11202-007-0032-2-p |
title_full |
Automorphisms of Coxeter groups of type Kn |
author_sort |
Ryan, J. A. |
journal |
Siberian mathematical journal |
journalStr |
Siberian mathematical journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
311 |
author_browse |
Ryan, J. A. |
container_volume |
48 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Ryan, J. A. |
doi_str_mv |
10.1007/s11202-007-0032-2 |
dewey-full |
510 |
title_sort |
automorphisms of coxeter groups of type kn |
title_auth |
Automorphisms of Coxeter groups of type Kn |
abstract |
Abstract A Coxeter system (W, S) is said to be of type Kn if the associated Coxeter graph $ Γ_{S} $ is complete on n vertices and has only odd edge labels. If W satisfies either of: (1) n = 3; (2) W is rigid; then the automorphism group of W is generated by the inner automorphisms of W and any automorphisms induced by $ Γ_{S} $. Indeed, Aut(W) is the semidirect product of Inn(W) and the group of diagram automorphisms, and furthermore W is strongly rigid. We also show that if W is a Coxeter group of type Kn then W has exactly one conjugacy class of involutions and hence Aut(W) = Spec(W). © Springer Science+Business Media, Inc. 2007 |
abstractGer |
Abstract A Coxeter system (W, S) is said to be of type Kn if the associated Coxeter graph $ Γ_{S} $ is complete on n vertices and has only odd edge labels. If W satisfies either of: (1) n = 3; (2) W is rigid; then the automorphism group of W is generated by the inner automorphisms of W and any automorphisms induced by $ Γ_{S} $. Indeed, Aut(W) is the semidirect product of Inn(W) and the group of diagram automorphisms, and furthermore W is strongly rigid. We also show that if W is a Coxeter group of type Kn then W has exactly one conjugacy class of involutions and hence Aut(W) = Spec(W). © Springer Science+Business Media, Inc. 2007 |
abstract_unstemmed |
Abstract A Coxeter system (W, S) is said to be of type Kn if the associated Coxeter graph $ Γ_{S} $ is complete on n vertices and has only odd edge labels. If W satisfies either of: (1) n = 3; (2) W is rigid; then the automorphism group of W is generated by the inner automorphisms of W and any automorphisms induced by $ Γ_{S} $. Indeed, Aut(W) is the semidirect product of Inn(W) and the group of diagram automorphisms, and furthermore W is strongly rigid. We also show that if W is a Coxeter group of type Kn then W has exactly one conjugacy class of involutions and hence Aut(W) = Spec(W). © Springer Science+Business Media, Inc. 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 |
container_issue |
2 |
title_short |
Automorphisms of Coxeter groups of type Kn |
url |
https://doi.org/10.1007/s11202-007-0032-2 |
remote_bool |
false |
ppnlink |
129553573 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11202-007-0032-2 |
up_date |
2024-07-03T16:46:21.174Z |
_version_ |
1803577124375756800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033380688</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504044050.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11202-007-0032-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033380688</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11202-007-0032-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ryan, J. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automorphisms of Coxeter groups of type Kn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, Inc. 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A Coxeter system (W, S) is said to be of type Kn if the associated Coxeter graph $ Γ_{S} $ is complete on n vertices and has only odd edge labels. If W satisfies either of: (1) n = 3; (2) W is rigid; then the automorphism group of W is generated by the inner automorphisms of W and any automorphisms induced by $ Γ_{S} $. Indeed, Aut(W) is the semidirect product of Inn(W) and the group of diagram automorphisms, and furthermore W is strongly rigid. We also show that if W is a Coxeter group of type Kn then W has exactly one conjugacy class of involutions and hence Aut(W) = Spec(W).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coxeter group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automorphism</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Siberian mathematical journal</subfield><subfield code="d">Kluwer Academic Publishers-Consultants Bureau, 1966</subfield><subfield code="g">48(2007), 2 vom: März, Seite 311-316</subfield><subfield code="w">(DE-627)129553573</subfield><subfield code="w">(DE-600)220062-4</subfield><subfield code="w">(DE-576)015009602</subfield><subfield code="x">0037-4466</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:311-316</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11202-007-0032-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2007</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">311-316</subfield></datafield></record></collection>
|
score |
7.402733 |